The objective of the current investigation is to investigate the entropy generation inside porous media utilizing a pore scale modeling approach. The current investigation improves the thermodynamics performance of the recent analysis (Int. J. Heat Mass Transfer, 2016, 99, pp. 303–316) by considering different cross-sectional configurations and analyzing the thermal system for various Reynolds numbers, porosities, and a comparison between the previous and current investigation. The Nusselt number, the dimensionless volume-averaged entropy generation rate, Bejan number, and performance evaluation criterion (PEC) are all presented and discussed. The dimensionless volume-averaged entropy generation rate was found to increase with increasing Reynolds number, with the increase being higher for lower porosity medium. A slight variation of the dimensionless volume-averaged entropy generation rate is observed for higher Reynolds numbers which is confirmed for both cross-sectional configurations. Examination of the Bejan number demonstrates heat transfer irreversibility (HTI) dominance for most of the Reynolds number ranges examined. The results indicate that the longitudinal elliptical cross-sectional configuration with porosity equals to 0.53 provides superior performance when applying the performance evaluation criterion utilized.

References

1.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
,
Springer
,
New York
.
2.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
195
203
.
3.
Armaghani
,
T.
,
Chamkha
,
A. J.
,
Maghrebi
,
M. J.
, and
Nazari
,
M.
,
2014
, “
Numerical Analysis of a Nanofluid Forced Convection in a Porous Channel: A New Heat Flux Model in LTNE Condition
,”
J. Porous Media
,
17
(
7
), pp.
637
646
.
4.
Torabi
,
M.
,
Karimi
,
N.
, and
Zhang
,
K.
,
2015
, “
Heat Transfer and Second Law Analyses of Forced Convection in a Channel Partially Filled by Porous Media and Featuring Internal Heat Sources
,”
Energy
,
93
(
Part 1
), pp.
106
127
.
5.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2015
, “
Natural Convection and Entropy Generation of Nanofluid Filled Cavity Having Different Shaped Obstacles Under the Influence of Magnetic Field and Internal Heat Generation
,”
J. Taiwan Inst. Chem. E
,
56
, pp.
42
56
.
6.
Bejan
,
A.
,
1982
,
Entropy Generation through Heat and Fluid Flow
,
Wiley
,
New York
.
7.
Torabi
,
M.
, and
Zhang
,
K.
,
2015
, “
Temperature Distribution, Local and Total Entropy Generation Analyses in MHD Porous Channels With Thick Walls
,”
Energy
,
87
, pp.
540
54
.
8.
Ismael
,
M. A.
,
Armaghani
,
T.
, and
Chamkha
,
A. J.
,
2016
, “
Conjugate Heat Transfer and Entropy Generation in a Cavity Filled With a Nanofluid-Saturated Porous Media and Heated by a Triangular Solid
,”
J. Taiwan Inst. Chem. E
,
59
, pp.
138
151
.
9.
Bejan
,
A.
,
2001
, “
Thermodynamic Optimization of Geometry in Engineering Flow Systems
,”
Exergy Int. J.
,
1
(
4
), pp.
269
277
.
10.
Fersadou
,
I.
,
Kahalerras
,
H.
, and
Ganaoui
,
M. E.
,
2015
, “
MHD Mixed Convection and Entropy Generation of a Nanofluid in a Vertical Porous Channel
,”
Comput. Fluids
,
121
, pp.
164
179
.
11.
Aziz
,
A.
,
2006
, “
Entropy Generation in Pressure Gradient Assisted Couette Flow With Different Thermal Boundary Conditions
,”
Entropy
,
8
(
2
), pp.
50
62
.
12.
Drost
,
M. K.
, and
White
,
M. D.
,
1991
, “
Numerical Predictions of Local Entropy Generation in an Impinging Jet
,”
ASME J. Heat Transfer
,
113
(
4
), pp.
823
829
.
13.
Makinde
,
O. D.
,
2008
, “
Entropy-Generation Analysis for Variable-Viscosity Channel Flow With Non-Uniform Wall Temperature
,”
Appl. Energy
,
85
(
5
), pp.
384
393
.
14.
Torabi
,
M.
,
Zhang
,
K.
, and
Shohel
,
M.
,
2015
, “
Temperature and Entropy Generation Analyses Between and Inside Rotating Cylinders Using Copper–Water Nanofluid
,”
ASME J. Heat Transfer
,
137
(
5
), p.
051701
.
15.
Shojaeian
,
M.
,
Yildiz
,
M.
, and
Koşar
,
A.
,
2015
, “
Convective Heat Transfer and Second Law Analysis of Non-Newtonian Fluid Flows With Variable Thermophysical Properties in Circular Channels
,”
Int. Commun Heat Mass Transfer
,
60
, pp.
21
31
.
16.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2003
, “
The Second Law Analysis in Fundamental Convective Heat Transfer Problems
,”
Int. J. Therm. Sci.
,
42
(
2
), pp.
177
186
.
17.
Baytas
,
A. C.
, and
Baytas
,
A. R.
,
2005
,
Entropy Generation in Porous Media in Transport Phenomena in Porous Media
, Vol.
III
,
Elsevier
,
Amsterdam, The Netherlands
.
18.
Morosuk
,
T. V.
,
2005
, “
Entropy Generation in Conduits Filled With Porous Medium Totally and Partially
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2548
2560
.
19.
Li
,
C.
,
Zheng
,
L.
,
Zhang
,
X.
, and
Chen
,
G.
,
2016
, “
Flow and Heat Transfer of a Generalized Maxwell Fluid With Modified Fractional Fourier's Law and Darcy's Law
,”
Comput. Fluids
,
125
, pp.
25
38
.
20.
Betchen
,
L. J.
, and
Straatman
,
A. G.
,
2008
, “
The Development of a Volume-Averaged Entropy-Generation Function for Nonequilibrium Heat Transfer in High-Conductivity Porous Foams
,”
Numer. Heat Transfer B
,
53
(
5
), pp.
412
436
.
21.
Mahmud
,
S.
,
Fraser
,
R. A.
, and
Pop
,
I.
,
2007
, “
Flow, Thermal, Energy Transfer, and Entropy Generation Characteristics Inside Wavy Enclosures Filled With Microstructures
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1564
1575
.
22.
Mahdavi
,
M.
,
Saffar-Avval
,
M.
,
Tiari
,
S.
, and
Mansoori
,
Z.
,
2014
, “
Entropy Generation and Heat Transfer Numerical Analysis in Pipes Partially Filled With Porous Medium
,”
Int. J. Heat Mass Transfer
,
79
, pp.
496
506
.
23.
Torabi
,
M.
,
Peterson
,
G. P.
,
Torabi
,
M.
, and
Karimi
,
N.
,
2016
, “
A Thermodynamic Analysis of Forced Convection Through Porous Media Using Pore Scale Modeling
,”
Int. J. Heat Mass Transfer
,
99
, pp.
303
316
.
24.
Gamrat
,
G.
,
Favre-Marinet
,
M.
, and
Le Person
,
S.
,
2008
, “
Numerical Study of Heat Transfer Over Banks of Rods in Small Reynolds Number Cross-Flow
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
853
864
.
25.
Braga
,
E. J.
, and
de Lemos
,
M. J. S.
,
2005
, “
Heat Transfer in Enclosures Having a Fixed Amount of Solid Material Simulated With Heterogeneous and Homogeneous Models
,”
Int. J. Heat Mass Transfer
,
48
, pp.
4748
4765
.
26.
Bejan
,
A.
,
Dincer
,
I.
,
Lorente
,
S.
,
Miguel
,
A. F.
, and
Reis
,
A. H.
,
2004
,
Porous and Complex Flow Structures in Modern Technologies
,
Springer
,
New York
.
27.
Bejan
,
A.
,
2004
,
Convection Heat Transfer
,
Wiley
,
New York
.
28.
Saito
,
M. B.
,
de Lemos
,
M. J. S.
,
2005
, “
Interfacial Heat Transfer Coefficient for Non-Equilibrium Convective Transport in Porous Media
,”
Int. Commun. Heat Mass Transf
,
32
(
5
), pp.
666
676
.
29.
Kuwahara
,
F.
,
Shirota
,
M.
, and
Nakayama
,
A.
,
2001
, “
A Numerical Study of Interfacial Convective Heat Transfer Coefficient in Two-Energy Equation Model for Convection in Porous Media
,”
Int. J. Heat Mass Transfer
,
44
(
6
), pp.
1153
1159
.
30.
Wakao
,
N.
, and
Kaguei
,
S.
,
1982
,
Heat and Mass Transfer in Packed Beds
, Gordon and Breach,
New York
.
31.
Saito
,
M. B.
, and
de Lemos
,
M. J. S.
,
2005
, “
Convective Heat Transfer Coefficient for Turbulent Flow in a Porous Medium Formed by an Array of Square Rods
,”
Latin Am. J. Solids Struct.
,
2
(
4
), pp.
291
304
.
32.
Pahor
,
S.
, and
Strnad
,
J.
,
1961
, “
A Note on Heat Transfer in Laminar Flow Through a Gap
,”
Appl. Sci. Res.
,
10
(
1
), pp.
81
84
.
33.
Grosjean
,
C. C.
,
Pahor
,
S.
, and
Strnad
,
J.
,
1963
, “
Heat Transfer in Laminar Flow Through a Gap
,”
Appl. Sci. Res.
,
11
(3), pp.
292
294
.
34.
Ibrahim
,
T. A.
, and
Gomaa
,
A.
,
2009
, “
Thermal Performance Criteria of Elliptic Tube Bundle in Crossflow
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2148
2158
.
You do not currently have access to this content.