Experimental single-phase, condensation, and evaporation (flow boiling) pressure drop data from the literature and our previous studies were collected to evaluate previous frictional pressure drop correlations for horizontal microfin tubes of different geometries. The modified Ravigururajan and Bergles correlation, by adopting the Churchill model to calculate the smooth-tube friction factor and by using the hydraulic diameter in the Reynolds number, can predict single-phase turbulent frictional pressure drop data relatively well. Eleven pressure drop correlations were evaluated by the collected database for condensation and evaporation. Correlations originally developed for condensation and evaporation in smooth tubes can be suitable for microfin tubes if the friction factors in the correlations were calculated by the Churchill model to include microfin effects. The three most accurate correlations were recommended for condensation and evaporation in microfin tubes. The Cavallini et al. correlation and the modified Friedel correlation can give good predictions for both condensation and evaporation. However, some inconsistencies were found, even for the recommended correlations.

References

1.
Bergles
,
A. E.
,
2002
, “
ExHFT for Fourth Generation Heat Transfer Technology
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
335
344
.
2.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principles of Enhanced Heat Transfer
, 2nd ed.,
Taylor & Francis Group
,
New York
.
3.
Schlager
,
L. M.
,
Pate
,
M. B.
, and
Bergles
,
A. E.
,
1990
, “
Evaporation and Condensation Heat Transfer and Pressure Drop in Horizontal, 12.7-mm Microfin Tubes With Refrigerant 22
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
1041
1047
.
4.
Ding
,
G.
,
Hu
,
H.
,
Huang
,
X.
,
Deng
,
B.
, and
Gao
,
Y.
,
2009
, “
Experimental Investigation and Correlation of Two-Phase Frictional Pressure Drop of R410A–Oil Mixture Flow Boiling in a 5 mm Microfin Tube
,”
Int. J. Refrig.
,
32
(
1
), pp.
150
161
.
5.
Mancin
,
S.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2014
, “
R134a Flow Boiling Heat Transfer and Pressure Drop Inside a 3.4 mm ID Microfin Tube
,”
Energy Procedia
,
45
, pp.
608
615
.
6.
Ono
,
T.
,
Gao
,
L.
, and
Honda
,
T.
,
2010
, “
Heat Transfer and Flow Characteristics of Flow Boiling of CO2-Oil Mixtures in Horizontal Smooth and Micro-Fin Tubes
,”
Heat Transfer Asian Res.
,
39
(
3
), pp.
195
207
.
7.
Li
,
G. Q.
,
Wu
,
Z.
,
Li
,
W.
,
Wang
,
Z. K.
,
Wang
,
X.
,
Li
,
H. X.
, and
Yao
,
S. C.
,
2012
, “
Experimental Investigation of Condensation in Microfin Tubes of Different Geometries
,”
Exp. Therm. Fluid Sci.
,
37
, pp.
19
28
.
8.
Wu
,
Z.
,
Sundén
,
B.
,
Wang
,
L.
, and
Li
,
W.
,
2014
, “
Convective Condensation Inside Horizontal Smooth and Microfin Tubes
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051504
.
9.
Wu
,
Z.
,
Wu
,
Y.
,
Sundén
,
B.
, and
Li
,
W.
,
2013
, “
Convective Vaporization in Micro-Fin Tubes of Different Geometries
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
398
408
.
10.
Brognaux
,
L. J.
,
Webb
,
R. L.
, and
Chamra
,
L. M.
,
1997
, “
Single-Phase Heat Transfer in Micro-Fin Tubes
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4345
4357
.
11.
Copetti
,
J. B.
,
Macagnan
,
M. H.
,
de Souza
,
D.
, and
Oliveski
,
R. D. C.
,
2004
, “
Experiments With Micro-Fin Tube in Single Phase
,”
Int. J. Refrig.
,
27
(
8
), pp.
876
883
.
12.
Li
,
X. W.
,
Meng
,
J. A.
, and
Li
,
Z. X.
,
2007
, “
Experimental Study of Single-Phase Pressure Drop and Heat Transfer in a Micro-Fin Tube
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
641
648
.
13.
Siddique
,
M.
, and
Alhazmy
,
M.
,
2008
, “
Experimental Study of Turbulent Single-Phase Flow and Heat Transfer Inside a Micro-Finned Tube
,”
Int. J. Refrig.
,
31
(
2
), pp.
234
241
.
14.
Tam
,
H. K.
,
Tam
,
L. M.
,
Ghajar
,
A. J.
,
Tam
,
S. C.
, and
Zhang
,
T.
,
2012
, “
Experimental Investigation of Heat Transfer, Friction Factor, and Optimal Fin Geometries for the Internally Microfin Tubes in the Transition and Turbulent Regions
,”
J. Enhanced Heat Transfer
,
19
(
5
), pp.
457
476
.
15.
Wu
,
Z.
,
Sundén
,
B.
,
Wadekar
,
V. V.
, and
Li
,
W.
,
2015
, “
Heat Transfer Correlations for Single-Phase Flow, Condensation and Boiling in Microfin Tubes
,”
Heat Transfer Eng.
,
36
(
6
), pp.
582
595
.
16.
Newell
,
T. A.
, and
Shah
,
R. K.
,
2001
, “
An Assessment of Refrigerant Heat Transfer, Pressure Drop, and Void Fraction Effects in Microfin Tubes
,”
HVAC&R Res.
,
7
(
2
), pp.
125
153
.
17.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
,
2000
, “
Heat Transfer and Pressure Drop During Condensation of Refrigerants Inside Horizontal Enhanced Tubes
,”
Int. J. Refrig.
,
23
(
1
), pp.
4
25
.
18.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
,
1997
, “
Pressure Drop During Condensation and Vaporisation of Refrigerants Inside Enhanced Tubes
,”
Heat Technol.
,
15
(
1
), pp.
3
10
.
19.
Friedel
,
L.
,
1979
, “
Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow
,”
European Two-Phase Flow Group Meeting
, Ispra, Italy, Paper No. E2.
20.
Wang
,
H. S.
,
Rose
,
J. W.
, and
Honda
,
H.
,
2003
, “
Condensation of Refrigerants in Horizontal Microfin Tubes: Comparison of Correlations for Frictional Pressure Drop
,”
Int. J. Refrig.
,
26
(
4
), pp.
461
472
.
21.
Koyama
,
S.
,
Kondou
,
C.
, and
Kuwahara
,
K.
,
2008
, “
An Experimental Study on Condensation of CO2 in a Horizontal Micro-Fin Tube
,”
International Refrigeration and Air Conditioning Conference
, Purdue University, West Lafayette, IN, July 14–17, Paper No. 906.
22.
Olivier
,
J. A.
,
Kedzierski
,
M. A.
,
Meyer
,
J. P.
, and
Liebenberg
,
L.
,
2004
, “
Pressure Drop During Refrigerant Condensation Inside Horizontal Smooth, Helical Microfin, and Herringbone Microfin Tubes
,”
ASME J. Heat Transfer
,
126
(
5
), pp.
687
696
.
23.
Colombo
,
L. P. M.
,
Lucchini
,
A.
, and
Muzzio
,
A.
,
2012
, “
Flow Patterns, Heat Transfer and Pressure Drop for Evaporation and Condensation of R134A in Microfin Tubes
,”
Int. J. Refrig.
,
35
(
8
), pp.
2150
2165
.
24.
Kim
,
N. H.
,
Byun
,
H. W.
, and
Lee
,
J. K.
,
2013
, “
Condensation Heat Transfer and Pressure Drop of R-410A in Three 7.0 mm Outer Diameter Microfin Tubes Having Different Inside Geometries
,”
J. Enhanced Heat Transfer
,
20
(
3
), pp.
235
250
.
25.
Choi
,
J. Y.
,
Kedzierski
,
M. A.
, and
Domanski
,
P.
,
1999
, “
A Generalized Pressure Drop Correlation for Evaporation and Condensation of Alternative Refrigerants in Smooth and Micro-Fin Tubes
,” U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, Building and Fire Research Laboratory, Gaithersburg, MD, Report No. NISTIR 6333.
26.
Wu
,
Z.
,
Sundén
,
B.
,
Li
,
W.
, and
Wadekar
,
V. V.
,
2013
, “
Convective Condensation and Evaporation Inside 7-mm Outer-Diameter Microfin Tubes
,” ExHFT-8, Lisbon, Portugal, Paper No. 393.
27.
Hu
,
H. T.
,
Ding
,
G. L.
, and
Wang
,
K. J.
,
2008
, “
Measurement and Correlation of Frictional Two-Phase Pressure Prop of R410A/POE Oil Mixture Flow Boiling in a 7 mm Straight Micro-Fin Tube
,”
Appl. Therm. Eng.
,
28
(
11
), pp.
1272
1283
.
28.
Passos
,
J. C.
,
Kuser
,
V. F.
,
Haberschill
,
P.
, and
Lallemand
,
M.
,
2003
, “
Convective Boiling of R-407c Inside Horizontal Microfin and Plain Tubes
,”
Exp. Therm. Fluid Sci.
,
27
(
6
), pp.
705
713
.
29.
Rollmann
,
P.
,
Spindler
,
K.
, and
Müller-Steinhagen
,
H.
,
2011
, “
Heat Transfer, Pressure Drop and Flow Patterns During Flow Boiling of R407C in a Horizontal Microfin Tube
,”
Heat Mass Transfer
,
47
(
8
), pp.
951
961
.
30.
Wongsa-ngam
,
J.
,
Nualboonrueng
,
T.
, and
Wongwises
,
S.
,
2004
, “
Performance of Smooth and Micro-Fin Tubes in High Mass Flux Region of R-134a During Evaporation
,”
Heat Mass Transfer
,
40
(
6–7
), pp.
425
435
.
31.
Targanski
,
W.
, and
Cieslinski
,
J. T.
,
2007
, “
Evaporation of R407C/oil Mixtures Inside Corrugated and Micro-Fin Tubes
,”
Appl. Therm. Eng.
,
27
(
13
), pp.
2226
2232
.
32.
Kuo
,
C. S.
, and
Wang
,
C. C.
,
1996
, “
Horizontal Flow Boiling of R22 and R407C in a 9.52 mm Micro-Fin Tube
,”
Appl. Therm. Eng.
,
16
(
8
), pp.
719
731
.
33.
Ravigururajan
,
T. S.
, and
Bergles
,
A. E.
,
1985
, “
General Correlations for Pressure Drop and Heat Transfer for Single-Phase Turbulent Flow in Internally Ribbed Tubes
,”
Augmentation of Heat Transfer in Energy Systems
, Vol.
52
,
ASME
,
New York
, pp.
9
20
.
34.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
.
35.
Churchill
,
S. W.
,
1977
, “
Friction Factor Equation Spans all Fluid Flow Regimes
,”
Chem. Eng.
,
84
(
24
), pp.
91
92
.
36.
Smith
,
S. L.
,
1969
, “
Void Fraction in Two-Phase Flow: A Correlation Based Upon an Equal Velocity Head Model
,”
Proc. Inst. Mech. Eng.
,
184
(
36
), pp.
647
664
.
37.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
,
1970
, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
383
393
.
38.
Thome
,
J. R.
, and
El Hajal
,
J.
,
2003
, “
Two-Phase Flow Pattern Map for Evaporation in Horizontal Tubes: Latest Version
,”
Heat Transfer Eng.
,
24
(
6
), pp.
3
10
.
39.
Liebenberg
,
L.
,
Thome
,
J. R.
, and
Meyer
,
J. P.
,
2005
, “
Flow Visualization and Flow Pattern Identification With Power Spectral Density Distributions of Pressure Traces During Refrigerant Condensation in Smooth and Microfin Tubes
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
209
220
.
40.
Beattie
,
D. H.
, and
Whalley
,
P. B.
,
1982
, “
Simple Two-Phase Frictional Pressure Drop Calculation Method
,”
Int. J. Multiphase Flow
,
8
(
1
), pp.
83
87
.
41.
Muller-Steinhagen
,
H.
, and
Heck
,
K.
,
1986
, “
A Simple Friction Pressure Drop Correlation for Two-Phase Flow Pipes
,”
Chem. Eng. Proc.
,
20
(
6
), pp.
297
308
.
42.
Gronnerud
,
R.
,
1979
, “
Investigation of Liquid Hold-Up, Flow-Resistance and Heat Transfer in Circulation Type Evaporators, Part VI: Two-Phase Flow Resistance in Boiling Refrigerants
,”
Bull. Inst. Int. Froid., Annexe 1972-I
.
43.
Kedzierski
,
M. A.
, and
Goncalves
,
J. M.
,
1999
, “
Horizontal Convective Condensation of Alternative Refrigerants Within a Micro-Fin Tube
,”
J. Enhanced Heat Transfer
,
6
(
2–4
), pp.
161
178
.
44.
Haraguchi
,
H.
,
Koyama
,
S.
,
Esaki
,
J.
, and
Fujii
,
T.
,
1993
, “
Condensation Heat Transfer of Refrigerants HCFC134a, HCFC123 and HCFC22 in a Horizontal Smooth Tube and a Horizontal Micro-Fin Tube
,”
30th National Symposium
, Yokohama, pp.
343
345
.
45.
Goto
,
M.
,
Inoue
,
N.
, and
Ishiwatari
,
N.
,
2001
, “
Condensation and Evaporation Heat Transfer of R410A Inside Internally Grooved Horizontal Tubes
,”
Int. J. Refrig.
,
24
(
7
), pp.
628
638
.
46.
Narain
,
A.
,
Naik
,
R. R.
,
Ravikumar
,
S.
, and
Bhasme
,
S. S.
,
2015
, “
Fundamental Assessments and New Enabling Proposals for Heat Transfer Correlations and Flow Regime Maps for Shear Driven Condensers in the Annular/Stratified Regime
,”
J. Therm. Eng.
,
1
(
4
), pp.
307
321
.
You do not currently have access to this content.