The knowledge of thermal transport characteristics is of primary importance in the application of foams. The thermal characteristics of a foam heavily depend on its microstructure and, therefore, have to be investigated at a pore level. However, this analysis is a challenging task, because of the complex geometry of a foam. The use of foam models is a promising tool in their study. The Kelvin and the Weaire–Phelan foam models, among the most representative practical foam models, are used in this paper to numerically investigate heat transfer and pressure drop in metallic foams. They are developed in the “surface evolver” open source software. Mass, momentum, and energy equations, for air forced convection in open cell foams, are solved with a finite-element method, for different values of cell size and porosity. Heat transfer and pressure drop results are reported in terms of volumetric Nusselt number and Darcy–Weisbach friction factor, respectively. Finally, a comparison between the numerical predictions obtained with the two foam models is carried out, in order to evaluate the feasibility to substitute the more complex and computationally heavier Weaire–Phelan foam structure with the simpler Kelvin foam representation. Negligible differences between the two models are exhibited at high porosities.
Skip Nav Destination
Article navigation
Research-Article
Lord Kelvin and Weaire–Phelan Foam Models: Heat Transfer and Pressure Drop
Salvatore Cunsolo,
Salvatore Cunsolo
Dipartimento di Ingegneria Industriale,
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: sal.cuns@gmail.com
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: sal.cuns@gmail.com
Search for other works by this author on:
Marcello Iasiello,
Marcello Iasiello
Dipartimento di Ingegneria Industriale,
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: marcello.iasiello@unina.it
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: marcello.iasiello@unina.it
Search for other works by this author on:
Maria Oliviero,
Maria Oliviero
Istituto per i materiali compositi e biomedici,
Consiglio Nazionale delle Ricerche,
P.le Fermi, 1,
Portici, Napoli 80055, Italy
e-mail: maria.oliviero@unina.it
Consiglio Nazionale delle Ricerche,
P.le Fermi, 1,
Portici, Napoli 80055, Italy
e-mail: maria.oliviero@unina.it
Search for other works by this author on:
Nicola Bianco,
Nicola Bianco
Dipartimento di Ingegneria Industriale,
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: nicola.bianco@unina.it
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: nicola.bianco@unina.it
Search for other works by this author on:
Wilson K. S. Chiu,
Wilson K. S. Chiu
Mem. ASME
Department of Mechanical Engineering,
University of Connecticut,
Storrs, CT 06269
e-mail: wchiu@engr.uconn.edu
Department of Mechanical Engineering,
University of Connecticut,
Storrs, CT 06269
e-mail: wchiu@engr.uconn.edu
Search for other works by this author on:
Vincenzo Naso
Vincenzo Naso
Dipartimento di Ingegneria Industriale,
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: vincenzo.naso@unina.it
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: vincenzo.naso@unina.it
Search for other works by this author on:
Salvatore Cunsolo
Dipartimento di Ingegneria Industriale,
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: sal.cuns@gmail.com
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: sal.cuns@gmail.com
Marcello Iasiello
Dipartimento di Ingegneria Industriale,
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: marcello.iasiello@unina.it
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: marcello.iasiello@unina.it
Maria Oliviero
Istituto per i materiali compositi e biomedici,
Consiglio Nazionale delle Ricerche,
P.le Fermi, 1,
Portici, Napoli 80055, Italy
e-mail: maria.oliviero@unina.it
Consiglio Nazionale delle Ricerche,
P.le Fermi, 1,
Portici, Napoli 80055, Italy
e-mail: maria.oliviero@unina.it
Nicola Bianco
Dipartimento di Ingegneria Industriale,
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: nicola.bianco@unina.it
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: nicola.bianco@unina.it
Wilson K. S. Chiu
Mem. ASME
Department of Mechanical Engineering,
University of Connecticut,
Storrs, CT 06269
e-mail: wchiu@engr.uconn.edu
Department of Mechanical Engineering,
University of Connecticut,
Storrs, CT 06269
e-mail: wchiu@engr.uconn.edu
Vincenzo Naso
Dipartimento di Ingegneria Industriale,
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: vincenzo.naso@unina.it
Università degli Studi di Napoli Federico II,
P.le Tecchio, 80,
Napoli 80125, Italy
e-mail: vincenzo.naso@unina.it
1Corresponding author.
Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received January 7, 2015; final manuscript received July 16, 2015; published online October 21, 2015. Assoc. Editor: Antonio Barletta.
J. Heat Transfer. Feb 2016, 138(2): 022601 (7 pages)
Published Online: October 21, 2015
Article history
Received:
January 7, 2015
Revised:
July 16, 2015
Citation
Cunsolo, S., Iasiello, M., Oliviero, M., Bianco, N., Chiu, W. K. S., and Naso, V. (October 21, 2015). "Lord Kelvin and Weaire–Phelan Foam Models: Heat Transfer and Pressure Drop." ASME. J. Heat Transfer. February 2016; 138(2): 022601. https://doi.org/10.1115/1.4031700
Download citation file:
Get Email Alerts
Cited By
Speckled Laser Pump–Thermoreflectance Microscopy Probe to Measure and Study Micro/Nanoscale Thermal Transport: Numerical Simulation
J. Heat Mass Transfer (March 2025)
A Mini Review of Flexible Heat Spreaders Based on Functionalized Boron Nitride Nanosheets
J. Heat Mass Transfer (March 2025)
Molecular Dynamics Simulations in Nanoscale Heat Transfer: A Mini Review
J. Heat Mass Transfer (March 2025)
Related Articles
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
J. Heat Transfer (February,2002)
Heat Transfer Performance of Aluminum Foams
J. Heat Transfer (June,2011)
Forced Convection Heat Transfer and Hydraulic Losses in Graphitic Foam
J. Heat Transfer (September,2007)
Numerical Modeling of Multidirectional Flow and Heat Transfer in Graphitic Foams
J. Heat Transfer (May,2009)
Related Proceedings Papers
Related Chapters
Hydraulic Resistance
Heat Transfer & Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
Application of Adaptive Grayscale Morphological Operators for Image Analysis
Intelligent Engineering Systems through Artificial Neural Networks Volume 18
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine