The single-phase flow and heat transfer behaviors of SiC and Al2O3 nanoparticles dispersed in water were studied experimentally in a multiport minichannel flat tube (MMFT). The volume concentrations of the two nanofluids ranged from 0.001% to 1%. Their effective particle sizes, thermal conductivities, and viscosities were also measured. Results indicated that these nanofluids as a working fluid could enhance heat transfer but increase pressure drop and the Nusselt number by up to 85%. The two nanofluids exhibited a common optimal volume concentration of 0.01% for heat transfer. Effective particle size was also found to have a significant effect on heat transfer.
Issue Section:
Forced Convection
References
1.
Choi
, S. U. S.
, 1995
, “Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Developments and Applications of Non-Newtonian Flows
, D. A.
Siginer and
H. P.
Wang
, eds., American Society of Mechanical Engineers
, New York
.2.
Heris
, S. Z.
, Etemad
, S. Gh.
, and Esfahany
, M. N.
, 2006
, “Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,” Int. Commun. Heat Mass Transfer
, 33
(4
), pp. 529
–535
.3.
Wen
, D. S.
, and Ding
, Y. L.
, 2004
, “Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,” Int. J. Heat Mass Transfer
, 47
(24
), pp. 5181
–5188
.4.
Torii
, S. C.
, and Yang
, W. J.
, 2009
, “Heat Transfer Augmentation of Aqueous Suspensions of Nanodiamonds in Turbulent Pipe Flow
,” ASME J. Heat transfer
, 131
(4
), p. 043203
.5.
Hojjat
, M.
, Etemad
, S. Gh.
, Bagheri
, R.
, and Thibault
, J.
, 2011
, “Convective Heat Transfer of Non-Newtonian Nanofluids Through a Uniformly Heated Circular Tube
,” Int. J. Therm. Sci.
, 50
(4
), pp. 525
–531
.6.
Xuan
, Y.
, and Li
, Q.
, 2003
, “Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,” ASME J. Heat Transfer
, 125
(1
), pp. 151
–155
.7.
Aly
, W.
, 2014
, “Numerical Study on Turbulent Heat Transfer and Pressure Drop of Nanofluid in Coiled Tube-in-Tube Heat Exchangers
,” Energy Convers. Manage.
, 79
, pp. 304
–316
.8.
Sundar
, L. S.
, Naik
, M. T.
, Sharma
, K. V.
, Singh
, M. K.
, and Siva Reddy
, T. Ch.
, 2012
, “Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube With Fe3O4 Magnetic Nanofluid
,” Exp. Therm. Fluid Sci.
, 37
, pp. 65
–71
.9.
Sahin
, B.
, Gültekin
, G. G.
, Manay
, E.
, and Karagoz
, S.
, 2013
, “Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of Al2O3-Water Nanofluid
,” Exp. Therm. Fluid Sci.
, 50
, pp. 21
–28
.10.
Li
, J.
, and Kleinstreuer
, C.
, 2010
, “Entropy Generation Analysis for Nanofluid Flow in Microchannels
,” ASME J. Heat transfer
, 132
(12
), p. 122401
.11.
Liu
, D.
, and Yu
, L.
, 2010
, “Single-Phase Thermal Transport of Nanofluids in a Minichannel
,” ASME J. Heat Transfer
, 133
(3
), p. 031009
.12.
Seyf
, H. R.
, and Mohammadian
, S. K.
, 2011
, “Thermal and Hydraulic Performance of Counterflow Microchannel Heat Exchangers With and Without Nanofluids
,” ASME J. Heat Transfer
, 133
(8
), p. 081801
.13.
Nikkam
, N.
, Haghighi
, E. B.
, Saleemi
, M.
, Behi
, M.
, Khodabandeh
, R.
, Muhammed
, M.
, Palm
, B.
, and Toprak
, M. S.
, 2014
, “Experimental Study on Preparation and Base Liquid Effect on Thermo-Physical and Heat Transport Characteristics of α-SiC Nanofluids
,” Int. Commun. Heat Mass Transfer
, 55
, pp. 38
–44
.14.
Manna
, O.
, Singh
, S. K.
, and Paul
, G.
, 2012
, “Enhanced Thermal Conductivity of Nano-SiC Dispersed Water Based Nanofluid
,” Bull. Mater. Sci.
, 35
(5
), pp. 707
–712
.15.
Meriläinen
, A.
, Seppälä
, A.
, Saari
, K.
, Seitsonen
, J.
, Ruokolainen
, J.
, Puisto
, S.
, Rostedt
, N.
, and Ala-Nissila
, T.
, 2013
, “Influence of Particle Size and Shape on Turbulent Heat Transfer Characteristics and Pressure Losses in Water-Based Nanofluids
,” Int. J. Heat Mass Transfer
, 61
, pp. 439
–448
.16.
Yu
, W.
, and Choi
, S. U. S.
, 2003
, “The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,” J. Nanopart. Res.
, 5
(1
), pp. 167
–171
.17.
Batchelor
, G. K.
, 1977
, “The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,” J. Fluid Mech.
, 83
(1
), pp. 97
–117
.18.
Agostini
, B.
, Bontemps
, A.
, and Thonon
, B.
, 2006
, “Effects of Geometrical and Thermophysical Parameters on Heat Transfer Measurements in Small-Diameter Channels
,” Heat Transfer Eng.
, 27
(1
), pp. 14
–24
.19.
Anoop
, K.
, Sadr
, R.
, Yu
, J.
, Kang
, S.
, Jeon
, S.
, and Banerjee
, D.
, 2012
, “Experimental Study of Forced Convective Heat Transfer of Nanofluids in a Microchannel
,” Int. Commun. Heat Mass Transfer
, 39
(9
), pp. 1325
–1330
.20.
Shah
, R.
, and London
, A.
, 1978
, Laminar Flow Forced Convection in Ducts
, Academic Press
, London
.21.
Incropera
, F.
, and DeWitt
, D.
, 1994
, Fundamentals of Heat and Mass Transfer
, 4th ed., Wiley
, New York
.22.
Garimella
, S.
, Dowling
, W. J.
, van der Veen
, M.
, and Killion
, J. D.
, 2001
, “The Effect of Simultaneously Developing Flow on Heat Transfer in Rectangular Tubes
,” Heat Transfer Eng.
, 22
(6
), pp. 12
–25
.23.
Gnielinski
, V.
, 1976
, “New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,” Int. Chem. Eng.
, 16
, pp. 359
–368
.24.
Stephan
, K.
, and Preuβer
, P.
, 1979
, “Wärmeübergang und maximale wärmestromdichte beim behältersieden binärer und ternärer flüssigkeitsgemische
,” Chem. Ing. Tech.
, 51
(1
), p. 37
.25.
White
, F. M.
, 2006
, Viscous Fluid Flow
, 3rd ed., McGraw-Hill
, Singapore
.26.
Duangthongsuk
, W.
, and Wongwises
, S.
, 2010
, “An Experimental Study on the Heat Transfer Performance and Pressure Drop of TiO2-Water Nanofluids Flowing Under a Turbulent Flow Regime
,” Int. J. Heat Mass Transfer
, 53
(1–3
), pp. 334
–344
.27.
Sohel
, M. R.
, Khaleduzzaman
S. S.
, Saidur
R.
, Hepbasli
A.
, Sabri
M. F. M.
, and Mahbubul
, I. M.
, 2014
, “An Experimental Investigation of Heat Transfer Enhancement of a Minichannel Heat Sink Using Al2O3–H2O Nanofluid
,” Int. J. Heat Mass Transfer
, 74
, pp. 164
–172
.28.
Hwang
, K. S.
, Jang
, S. P.
, and Choi
, S. U. S.
, 2009
, “Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime
,” Int. J. Heat Mass Transfer
, 52
(1–2
), pp. 193
–199
.29.
Celata
, G. P.
, D'annibale
, F.
, Mariani
, A.
, Saraceno
, L.
, D'amato
, R.
, and Bubbico
, R.
, 2013
, “Heat Transfer in Water-Based SiC and TiO2 Nanofluids
,” Heat Transfer Eng.
, 34
(13
), pp. 1060
–1072
.30.
Xuan
, Y.
, and Roetzel
, W.
, 2000
, “Conceptions for Heat Transfer Correlation of Nanofluids
,” Int. J. Heat Mass Transfer
, 43
(19
), pp. 3701
–3707
.31.
Heyhat
, M. M.
, and Kowsary
, F.
, 2010
, “Effect of Particle Migration on Flow and Convective Heat Transfer of Nanofluids Flowing Through a Circular Pipe
,” ASME J. Heat Transfer
, 132
(6
), p. 062401
.32.
Singh
, P. K.
, Harikrishna
, P. V.
, Sundararajan
, T.
, and Das
, S. K.
, 2011
, “Experimental and Numerical Investigation Into the Heat Transfer Study of Nanofluids in Microchannel
,” ASME J. Heat Transfer
, 133
(12
), p. 121701
.33.
Huang
, Z. F.
, Nakayama
, A.
, Yang
, K.
, Yang
, C.
, and Liu
, W.
, 2010
, “Enhancing Heat Transfer in the Core Flow by Using Porous Medium Insert in a Tube
,” Int. J. Heat Mass Transfer
, 53
(5–6
), pp. 1164
–1174
.34.
Abbasian Arani
, A. A.
, and Amani
, J.
, 2013
, “Experimental Investigation of Diameter Effect on Heat Transfer Performance and Pressure Drop of TiO2-Water Nanofluid
,” Exp. Therm. Fluid Sci.
, 44
, pp. 520
–533
.35.
Ho
, C. J.
, and Chen
, W. C.
, 2013
, “An Experimental Study on Thermal Performance of Al2O3/Water Nanofluid in a Minichannel Heat Sink
,” Appl. Therm. Eng.
, 50
(1
), pp. 516
–522
.Copyright © 2016 by ASME
You do not currently have access to this content.