In this paper, we investigate the effects of second-order slip and magnetic field on the nonlinear mixed convection stagnation-point flow toward a vertical permeable stretching/shrinking sheet in an upper convected Maxwell (UCM) fluid with variable surface temperature. Numerical results are obtained using the bvp4c function from matlab for the reduced skin-friction coefficient, the rate of heat transfer, the velocity, and the temperature profiles. The results indicate that multiple (dual) solutions exist for a buoyancy opposing flow for certain values of the parameter space irrespective to the types of surfaces whether it is stretched or shrinked. It is found that an applied magnetic field compensates the suction velocity for the existence of the dual solutions. Depending on the parametric conditions; elastic parameter, magnetic field parameter, first- and second-order slip parameters significantly controls the flow and heat transfer characteristics. The illustrated streamlines show that for upper branch solutions, the effects of stretching and suction are direct and obvious as the flow near the surface is seen to suck through the permeable sheet and drag away from the origin of the sheet. However, aligned but reverse flow occurs for the case of lower branch solutions when the mixed convection effect is less significant.

References

1.
Sadeghy
,
K.
,
Hajibeygi
,
H.
, and
Taghavi
,
S. M.
,
2006
, “
Stagnation-Point Flow of Upper-Convective Maxwell Fluid
,”
Int. J. Nonlinear Mech.
,
41
(
10
), pp.
1242
1247
.
2.
Hayat
,
T.
,
Abbas
,
Z.
, and
Sajid
,
M.
,
2009
, “
MHD Stagnation-Point Flow of an Upper-Convected Maxwell Fluid Over a Stretching Surface
,”
Chaos, Solitons Fractals
,
39
(
2
), pp.
840
848
.
3.
Kumari
,
M.
, and
Nath
,
G.
,
2009
, “
Steady Mixed Convection Stagnation-Point Flow of Upper Convected Maxwell Fluids With Magnetic Field
,”
Int. J. Nonlinear Mech.
,
44
(
10
), pp.
1048
1055
.
4.
Lok
,
Y. Y.
,
Pop
,
I.
,
Ingham
,
D. B.
, and
Amin
,
N.
,
2009
, “
Mixed Convection Flow of a Micropolar Fluid Near a Non-Orthogonal Stagnation-Point on a Stretching Vertical Sheet
,”
Int. J. Numer. Methods Heat Fluid Flow
,
19
(3–4), pp.
459
483
.
5.
Beard
,
D. W.
, and
Walters
,
K.
,
1964
, “
Elastico-Viscous Boundary-Layer Flows I. Two-Dimensional Flow Near a Stagnation Point
,”
Math. Proc. Cambridge Philos. Soc.
,
60
(
03
), pp.
667
674
.
6.
Phan-Thien
,
N.
,
1983
, “
Plane and Axi-Symmetric Stagnation Flow of a Maxwellian Fluid
,”
Rheol. Acta
,
22
(
2
), pp.
127
130
.
7.
Abbas
,
Z.
,
Wang
,
Y.
,
Hayat
,
T.
, and
Oberlack
,
M.
,
2010
, “
Mixed Convection in the Stagnation-Point Flow of a Maxwell Fluid Towards a Vertical Stretching Surface
,”
Nonlinear Anal.: Real World Appl.
,
11
(
4
), pp.
3218
3228
.
8.
Nadeem
,
S.
,
Noreen
,
A. A. S.
,
Ahmet
,
Y.
,
Anwar
,
H.
, and
Mohamed
,
A.
,
2011
, “
Series Solutions for the Stagnation Flow of a Maxwell Fluid Over a Shrinking Sheet
,”
Compos.: Mech. Comput. Appl.
,
2
(4), pp.
297
311
.
9.
Nadeem
,
S.
,
Mehmood
,
R.
, and
Motsa
,
S. S.
,
2015
, “
Numerical Investigation on MHD Oblique Flow of Walter's B Type Nanofluid Over a Convective Surface
,”
Int. J. Therm. Sci.
,
92
, pp.
162
172
.
10.
Garg
,
V. K.
, and
Rajagopal
,
K. R.
,
1990
, “
Stagnation Point Flow of a Non-Newtonian Fluid
,”
Mech. Res. Commun.
,
17
(
6
), pp.
415
421
.
11.
Dunn
,
J. E.
, and
Rajagopal
,
K. R.
,
1995
, “
Fluids of Differential Types: Critical Review and Thermodynamic Analysis
,”
Int. J. Eng. Sci.
,
33
(
5
), pp.
689
729
.
12.
Rajagopal
,
K. R.
,
2012
, “
A Note on Novel Generalizations of the Maxwell Fluid Model
,”
Int. J. Nonlinear Mech.
,
47
(
1
), pp.
72
76
.
13.
Kumari
,
M.
,
Pop
,
I.
, and
Nath
,
G.
,
2010
, “
Transient MHD Stagnation Flow of a Non-Newtonian Fluid due to Impulsive Motion From Rest
,”
Int. J. Non-Linear Mech.
,
45
(
5
), pp.
463
473
.
14.
Noor
,
N. F. M.
,
Haq
,
R. U.
,
Nadeem
,
S.
, and
Hashim
,
I.
,
2015
, “
Mixed Convection Stagnation Flow of a Micropolar Nanofluid Along a Vertically Stretching Surface With Slip Effects
,”
Meccanica
,
50
(
8
), pp.
2007
2022
.
15.
Mehmood
,
R.
, and
Nadeem
,
S.
,
2015
, “
Oblique Stagnation Flow of Jeffery Fluid Over a Stretching Convective Surface
,”
Int. J. Numer. Methods Heat Fluid Flow
,
25
(
3
), pp.
454
471
.
16.
Nadeem
,
S.
,
Mehmood
,
R.
, and
Akbar
,
N. S.
,
2015
, “
Oblique Stagnation Point Flow of Carbon Nanotube Based Fluid Over a Convective Surface
,”
J. Comput. Theor. Nanosci.
,
12
(4), pp.
605
612
.
17.
Rahman
,
M. M.
,
Grosan
,
T.
, and
Pop
,
I.
,
2016
, “
Oblique Stagnation-Point Flow of a Nanofluid Past a Shrinking Sheet
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
1
), pp.
189
213
.
18.
Fang
,
T.
,
Yao
,
S.
,
Zhang
,
J.
, and
Aziz
,
A.
,
2010
, “
Viscous Flow Over a Shrinking Sheet With a Second Order Slip Flow Model
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
7
), pp.
1831
1842
.
19.
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2005
, “
Universal Solutions for the Streamwise Variation of the Temperature of a Moving Sheet in the Presence of a Moving Fluid
,”
Int. J. Heat Mass Transfer
,
48
(
15
), pp.
3047
3056
.
20.
Hayat
,
T.
,
Rafique
,
A.
,
Malik
,
M. Y.
, and
Obaidat
,
S.
,
2012
, “
Stagnation-Point Flow of Maxwell Fluid With Magnetic Field and Radiation Effects
,”
Heat Transfer-Asian Res.
,
41
(
1
), pp.
23
32
.
21.
Shehzad
,
S. A.
,
Alsaedi
,
A.
, and
Hayat
,
T.
,
2013
, “
Hydromagnetic Steady Flow of Maxwell Fluid Over a Bidirectional Surface With Prescribed Surface Temperature and Prescribed Surface Heat Flux
,”
PLOS ONE
,
8
(7), p.
68139
.
22.
Wu
,
L.
,
2008
, “
A Slip Model for Rarefied Gas Flows at Arbitrary Knudsen Number
,”
Appl. Phys. Lett.
,
93
(
25
), p.
253103
.
23.
Fang
,
T.
, and
Aziz
,
A.
,
2010
, “
Viscous Flow With Second-Order Slip Velocity Over a Stretching Sheet
,”
Z. Naturforsch. A: Phys. Sci.
,
65
(12), pp.
1087
1092
.
24.
Roşca
,
A. V.
, and
Pop
,
I.
,
2013
, “
Flow and Heat Transfer Over a Vertical Permeable Stretching/Shrinking Sheet With a Second Order Slip
,”
Int. J. Heat Mass Trans.
,
60
(
5
), pp.
355
364
.
25.
Rahman
,
M. M.
,
Roşca
,
A. V.
, and
Pop
,
I.
,
2014
, “
Boundary Layer Flow of a Nanofluid Past a Permeable Exponentially Shrinking/Stretching Surface With Second Order Slip Using Buongiorno's Model
,”
Int. J. Heat Mass Trans.
,
77
(
10
), pp.
1133
1143
.
26.
Rahman
,
M. M.
, and
Pop
,
I.
,
2016
, “
Effects of Second-Order Slip and Viscous Dissipation on the Analysis of the Boundary Layer Flow and Heat Transfer Characteristics of a Casson Fluid
,”
SQU J. Sci.
,
21
(1), pp.
48
63
.
27.
Shampine
,
L. F.
,
Reichelt
,
M. W.
, and
Kierzenka
,
J.
,
2010
, “
Solving Boundary Value Problems for Ordinary Differential Equations in Matlab With bvp4c
,” http://www.mathworks.com/bvp_tutorial, The Mathworks, Inc., Natick, MA, accessed July 22, 2016.
28.
Lok
,
Y. Y.
,
Amin
,
N.
,
Campean
,
D.
, and
Pop
,
I.
,
2005
, “
Steady Mixed Convection Flow of a Micropolar Fluid Near the Stagnation Point on a Vertical Surface
,”
Int. J. Numer. Methods Heat Fluid Flow
,
15
(
7
), pp.
654
670
.
29.
Lok
,
Y. Y.
,
Ishak
,
A.
, and
Pop
,
I.
,
2013
, “
Stagnation-Point Flow and Heat Transfer Towards a Shrinking Sheet With Suction in an Upper Convected Maxwell Fluid
,”
Z. Naturforsch.
,
68
(10–11), pp.
693
700
.
30.
Wang
,
C. Y.
,
2008
, “
Stagnation Flow Towards a Shrinking Sheet
,”
Int. J. Nonlinear Mech.
,
43
(
5
), pp.
377
382
.
31.
Ishak
,
A.
,
Nazar
,
R.
,
Bachok
,
N.
, and
Pop
,
I.
,
2010
, “
MHD Mixed Convection Flow Near the Stagnation-Point on a Vertical Permeable Surface
,”
Physics A
,
389
(
1
), pp.
40
46
.
32.
Tamim
,
H.
,
Dinarvand
,
S.
,
Hosseini
,
R.
, and
Pop
,
I.
,
2014
, “
MHD Mixed Convection Stagnation-Point Flow of a Nanofluid Over a Vertical Permeable Surface: A Comprehensive Report of Dual Solutions
,”
Heat Mass Transfer
,
50
(
5
), pp.
639
650
.
33.
Rahman
,
M. M.
, and
Pop
,
I.
,
2014
, “
Mixed Convection Boundary Layer Stagnation-Point Flow of a Jeffery Fluid Past a Permeable Vertical Flat Plate
,”
Z. Naturforsch.
,
69
(12), pp.
687
696
.
34.
Miklavčič
,
M.
, and
Wang
,
C. Y.
,
2006
, “
Viscous Flow due to a Shrinking Sheet
,”
Q. Appl. Math.
,
64
(
2
), pp.
283
290
.
35.
Weidman
,
P. D.
,
Kubitschek
,
D. G.
, and
Davis
,
A. M. J.
,
2006
, “
The Effect of Transpiration on Self-Similar Boundary Layer Flow Over Moving Surfaces
,”
Int. J. Eng. Sci.
,
44
(11–12), pp.
730
737
.
36.
Harris
,
S. D.
,
Ingham
,
D. B.
, and
Pop
,
I.
,
2009
, “
Mixed Convection Boundary-Layer Flow Near the Stagnation Point on a Vertical Surface in a Porous Medium: Brinkman Model With Slip
,”
Transp. Porous Media
,
77
(
2
), pp.
267
285
.
37.
Rahman
,
M. M.
,
Roşca
,
A. V.
, and
Pop
,
I.
,
2015
, “
Boundary Layer Flow of a Nanofluid Past a Permeable Exponentially Shrinking Surface With Convective Boundary Condition Using Buongiorno's Model
,”
Int. J. Numer. Methods Heat Fluid Flow
,
25
(
2
), pp.
299
319
.
38.
Rajagopal
,
K. R.
,
1995
, “
Boundary Layers in Non-Linear Fluids, Trends in Applications of Mathematics to Mechanics
,”
Pittman Monographs and Surveys in Pure and Applied Mathematics
,
M. D. P.
Monteivo Marques
and
J. F.
Rodrigues
, eds., Vol.
77
,
Longman,
London
, pp.
209
218
.
You do not currently have access to this content.