Microwater droplet splitting and merging in a parallel-plate electrowetting-on-dielectric (EWOD) device have been studied numerically. The transient governing equations for the microfluidic flow are solved by a finite volume scheme with a two-step projection method on a fixed computational domain. The interface between liquid and gas is tracked by a coupled level set (LS) and volume-of-fluid (CLSVOF) method. A continuum surface force (CSF) model is employed to model the surface tension at the interface. Contact angle hysteresis which is an essential component in EWOD modeling is implemented together with a simplified model for the viscous stresses exerted by the two plates at the solid–liquid interface. The results of the numerical model have been validated with published experimental data and the physics of droplet motion within the EWOD device has been examined. A parametric study has been performed in which the effects of channel height and several other parameters on the fluid motion have been studied.

References

1.
Madou
,
M. J.
,
2002
,
Fundamentals of Microfabrication: The Science of Miniaturization
,
CRC Press
,
Boca Raton, FL
.
2.
Darhuber
,
A. A.
,
Davis
,
J. M.
,
Troian
,
S. M.
, and
Reisner
,
W. W.
,
2003
, “
Thermocapillary Actuation of Liquid Flow on Chemically Patterned Surfaces
,”
Phys. Fluids
,
15
(
5
), pp.
1295
1304
.10.1063/1.1562628
3.
Lee
,
J.
,
He
,
B.
, and
Patankar
,
N. A.
,
2005
, “
A Roughness-Based Wettability Switching Membrane Device for Hydrophobic Surfaces
,”
J. Micromech. Microeng.
,
15
(
3
), pp.
591
600
.10.1088/0960-1317/15/3/022
4.
Lippmann
,
G.
,
1875
, “
Relations Entre Les Phénomènes Électriques et Capillaires
,” Ph.D. thesis,
Gauthier-Villars
,
Paris, France
.
5.
Klingner
,
A.
, and
Mugele
,
F.
,
2004
, “
Electrowetting-Induced Morphological Transitions of Fluid Microstructures
,”
J. Appl. Phys.
,
95
(
5
), pp.
2918
2920
.10.1063/1.1643771
6.
Mugele
,
F.
, and
Baret
,
J.-C.
,
2005
, “
Electrowetting: From Basics to Applications
,”
J. Phys.: Condens. Matter
,
17
(
28
), pp.
R705
R774
.10.1088/0953-8984/17/28/R01
7.
Darhuber
,
A. A.
, and
Troian
,
S. M.
,
2005
, “
Principles of Microfluidic Actuation by Modulation of Surface Stresses
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
425
455
.10.1146/annurev.fluid.36.050802.122052
8.
Minnema
,
L.
,
Barneveld
,
H.
, and
Rinkel
,
P.
,
1980
, “
An Investigation into the Mechanism of Water Treeing in Polyethylene High-Voltage Cables
,”
IEEE Trans. Electr. Insul.
,
6
, pp.
461
472
.10.1109/TEI.1980.298275
9.
Berge
,
B.
,
1993
, “
Electrocapillarité et Mouillage de Films Isolants par l'eau
,”
C. R. Acad. Sci. Sér. 2, Méc., Phys., Chim., Sci. Terre Univers
,
317
(
2
), pp.
157
163
.
10.
Pollack
,
M. G.
,
Shenderov
,
A. D.
, and
Fair
,
R. B.
,
2002
, “
Electrowetting-Based Actuation of Droplets for Integrated Microfluidics
,”
Lab Chip
,
2
(
2
), pp.
96
101
.10.1039/b110474h
11.
Cho
,
S. K.
,
Moon
,
H.
, and
Kim
,
C.-J.
,
2003
, “
Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits
,”
J. Microelectromech. Syst.
,
12
(
1
), pp.
70
80
.10.1109/JMEMS.2002.807467
12.
Jang
,
L. S.
,
Lin
,
G. H.
,
Lin
,
Y. L.
,
Hsu
,
C. Y.
,
Kan
,
W. H.
, and
Chen
,
C. H.
,
2007
, “
Simulation and Experimentation of a Microfluidic Device Based on Electrowetting on Dielectric
,”
Biomed. Microdevices
,
9
(
6
), pp.
777
786
.10.1007/s10544-007-9089-8
13.
Walker
,
S. W.
, and
Shapiro
,
B.
,
2006
, “
Modeling the Fluid Dynamics of Electrowetting on Dielectric (EWOD)
,”
J. Microelectromech. Syst.
,
15
(
4
), pp.
986
1000
.10.1109/JMEMS.2006.878876
14.
Walker
,
S. W.
,
Shapiro
,
B.
, and
Nochetto
,
R. H.
,
2009
, “
Electrowetting With Contact Line Pinning: Computational Modeling and Comparisons With Experiments
,”
Phys. Fluids
,
21
(
10
), p.
102103
.10.1063/1.3254022
15.
Wang
,
K.-L.
, and
Jones
,
T.
,
2005
, “
Electrowetting Dynamics of Microfluidic Actuation
,”
Langmuir
,
21
(
9
), pp.
4211
4217
.10.1021/la0468702
16.
Decamps
,
C.
, and
De Coninck
,
J.
,
2000
, “
Dynamics of Spontaneous Spreading Under Electrowetting Conditions
,”
Langmuir
,
16
(
26
), pp.
10150
10153
.10.1021/la000590e
17.
Oh
,
J. M.
,
Ko
,
S. H.
, and
Kang
,
K. H.
,
2010
, “
Analysis of Electrowetting-Driven Spreading of a Drop in Air
,”
Phys. Fluids
,
22
(
3
), p.
032002
.10.1063/1.3360331
18.
Hoshino
,
K.
,
Triteyaprasert
,
S.
,
Matsumoto
,
K.
, and
Shimoyama
,
I.
,
2004
, “
Electrowetting-Based Pico-Liter Liquid Actuation in a Glass-Tube Microinjector
,”
Sens. Actuators, A
,
114
(
2
), pp.
473
477
.10.1016/j.sna.2004.02.002
19.
Wheeler
,
A. R.
,
Moon
,
H.
,
Kim
,
C.-J.
,
Loo
,
J. A.
, and
Garrell
,
R. L.
,
2004
, “
Electrowetting-Based Microfluidics for Analysis of Peptides and Proteins by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry
,”
Anal. Chem.
,
76
(
16
), pp.
4833
4838
.10.1021/ac0498112
20.
Matsumoto
,
H.
, and
Colgate
,
J. E.
,
1990
, “
Preliminary Investigation of Micropumping Based on Electrical Control of Interfacial Tension
,”
IEEE
Micro Electro Mechanical Systems. An Investigation of Micro Structures
,
Sensors, Actuators, Machines and Robots
,
IEEE
, pp.
105
110
.10.1109/MEMSYS.1990.110258
21.
Batchelor
,
G. K.
,
2000
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
, Cambridge, UK.
22.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
23.
Rudman
,
M.
,
1998
, “
A Volume-Tracking Method for Incompressible Multifluid Flows With Large Density Variations
,”
Int. J. Numer. Methods Fluids
,
28
(
2
), pp.
357
378
.10.1002/(SICI)1097-0363(19980815)28:2<357::AID-FLD750>3.0.CO;2-D
24.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.10.1006/jcph.1994.1155
25.
Scardovelli
,
R.
, and
Zaleski
,
S.
,
1999
, “
Direct Numerical Simulation of Free-Surface and Interfacial Flow
,”
Annu. Rev. Fluid Mech.
,
31
(
1
), pp.
567
603
.10.1146/annurev.fluid.31.1.567
26.
Meier
,
M.
,
Yadigaroglu
,
G.
, and
Smith
,
B. L.
,
2002
, “
A Novel Technique for Including Surface Tension in PLIC-VOF Methods
,”
Eur. J. Mech.-B/Fluids
,
21
(
1
), pp.
61
73
.10.1016/S0997-7546(01)01161-X
27.
Renardy
,
Y.
, and
Renardy
,
M.
,
2002
, “
PROST: A Parabolic Reconstruction of Surface Tension for the Volume-of-Fluid Method
,”
J. Comput. Phys.
,
183
(
2
), pp.
400
421
.10.1006/jcph.2002.7190
28.
Tong
,
A. Y.
, and
Wang
,
Z.
,
2007
, “
A Numerical Method for Capillarity-Dominant Free Surface Flows
,”
J. Comput. Phys.
,
221
(
2
), pp.
506
523
.10.1016/j.jcp.2006.06.034
29.
Sussman
,
M.
, and
Puckett
,
E. G.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
162
(
2
), pp.
301
337
.10.1006/jcph.2000.6537
30.
Son
,
G.
, and
Hur
,
N.
,
2002
, “
A Coupled Level Set and Volume-of-Fluid Method for the Buoyancy-Driven Motion of Fluid Particles
,”
Numer. Heat Transfer, Part B
,
42
(
6
), pp.
523
542
.10.1080/10407790260444804
31.
Sussman
,
M.
,
2003
, “
A Second Order Coupled Level Set and Volume-of-Fluid Method for Computing Growth and Collapse of Vapor Bubbles
,”
J. Comput. Phys.
,
187
(
1
), pp.
110
136
.10.1016/S0021-9991(03)00087-1
32.
Yang
,
X.
,
James
,
A. J.
,
Lowengrub
,
J.
,
Zheng
,
X.
, and
Cristini
,
V.
,
2006
, “
An Adaptive Coupled Level-Set/Volume-of-Fluid Interface Capturing Method for Unstructured Triangular Grids
,”
J. Comput. Phys.
,
217
(
2
), pp.
364
394
.10.1016/j.jcp.2006.01.007
33.
Rudman
,
M.
,
1997
, “
Volume-Tracking Methods for Interfacial Flow Calculations
,”
Int. J. Numer. Methods Fluids
,
24
(
7
), pp.
671
691
.10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
34.
Wang
,
Z.
, and
Tong
,
A. Y.
,
2010
, “
A Sharp Surface Tension Modeling Method for Two-Phase Incompressible Interfacial Flows
,”
Int. J. Numer. Methods Fluids
,
64
(
7
), pp.
709
732
.10.1002/fld.2166
35.
Brackbill
,
J.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
36.
Gupta
,
R.
,
Sheth
,
D. M.
,
Boone
,
T. K.
,
Sevilla
,
A. B.
, and
Frechette
,
J.
,
2011
, “
Impact of Pinning of the Triple Contact Line on Electrowetting Performance
,”
Langmuir
,
27
(
24
), pp.
14923
14929
.10.1021/la203320g
37.
Keshavarz-Motamed
,
Z.
,
Kadem
,
L.
, and
Dolatabadi
,
A.
,
2009
, “
Effects of Dynamic Contact Angle on Numerical Modeling of Electrowetting in Parallel Plate Microchannels
,”
Microfluid. Nanofluid.
,
8
(
1
), pp.
47
56
.10.1007/s10404-009-0460-3
38.
Harlow
,
F.
, and
Amsden
,
A.
,
1971
, “
Fluid Dynamics: A LASL Monograph (Mathematical Solutions for Problems in Fluid Dynamics)
,” Los Alamos National Laboratory, Technical Report No. LA-4700.
39.
Kothe
,
D. B.
,
Mjolsness
,
R. C.
, and
Torrey
,
M. D.
,
1991
, “
RIPPLE: A Computer Program for Incompressible Flows With Free Surfaces
,” Los Alamos National Laboratory, Technical Report No. LA-12007-MS.
You do not currently have access to this content.