Enhancement in carbon dioxide absorption in water has been studied using SiO2 and TiO2 nanoparticles using the capillary tube apparatus for which previous results on Fe3O4 nanoparticles were reported earlier. Enhancements of up to 165% in the mass transfer coefficients were observed at fairly low volume fractions of the particles. A model which accounts for the effect of particles in terms of a superimposed convection has been proposed to explain the observed effects of particle size, hold-up, and material density. The model provides a good fit to the data from wetted wall column and capillary tube experiment for Fe3O4 from the previous literature, as well as for the data from this work.
Issue Section:
Research Papers
References
1.
Eastman
, J. A.
, Choi
, S. U. S.
, Li
, S.
, Yu
, W.
, and Thompson
, L. J.
, 2001
, “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,” Appl. Phys. Lett.
, 78
(6
), pp. 718
–720
.10.1063/1.13412182.
Xie
, H.
, Lee
, H.
, Youn
, W.
, and Choi
, M.
, 2003
, “Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,” J. Appl. Phys.
, 94
(8
), pp. 4967
–4971
.10.1063/1.16133743.
Choi
, S. U. S.
, Zhang
, Z. G.
, Yu
, W.
, Lockwood
, F. E.
, and Grulke
, E. A.
, 2001
, “Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,” Appl. Phys. Lett.
, 79
(14
), pp. 2252
–2254
.10.1063/1.14082724.
Patel
, H. E.
, Das
, S. K.
, Sundararajan
, T.
, Sreekumaran Nair
, A.
, George
, B.
, and Pradeep
, T.
, 2003
, “Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,” Appl. Phys. Lett.
, 83
(14
), pp. 2931
–2933
.10.1063/1.16025785.
Xie
, H.
, Wang
, J.
, Xi
, T.
, Liu
, Y.
, Ai
, F.
, and Wu
, Q.
, 2002
, “Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles
,” J. Appl. Phys.
, 91
(7
), pp. 4568
–4572
.10.1063/1.14541846.
Olle
, B.
, Bucak
, S.
, Holmes
, T. C.
, Bromberg
, L.
, Hatton
, T. A.
, and Wang
, D. I. C.
, 2006
, “Enhancement of Oxygen Mass Transfer Using Functionalized Magnetic Nanoparticles
,” Ind. Eng. Chem. Res.
, 45
(12
), pp. 4355
–4363
.10.1021/ie051348b7.
Kim
, J. K.
, Jung
, J. Y.
, and Kang
, Y. T.
, 2006
, “The Effect of Nano-Particles on the Bubble Absorption Performance in a Binary Nanofluid
,” Int. J. Refrig.
, 29
(1
), pp. 22
–29
.10.1016/j.ijrefrig.2005.08.0068.
Nagy
, E.
, Feczkó
, T.
, and Koroknai
, B.
, 2007
, “Enhancement of Oxygen Mass Transfer Rate in the Presence of Nanosized Particles
,” Chem. Eng. Sci.
, 62
(24
), pp. 7391
–7398
.10.1016/j.ces.2007.08.0649.
Komati
, S.
, and Suresh
, A. K.
, 2008
, “CO2 Absorption Into Amine Solutions: A Novel Strategy for Intensification Based on the Addition of Ferrofluids
,” J. Chem. Technol. Biotechnol.
, 83
(8
), pp. 1094
–1100
.10.1002/jctb.187110.
Komati
, S.
, and Suresh
, A. K.
, 2010
, “Anomalous Enhancement of Interphase Transport Rates by Nanoparticles: Effect of Magnetic Iron Oxide on Gas−Liquid Mass Transfer
,” Ind. Eng. Chem. Res.
, 49
(1
), pp. 390
–405
.10.1021/ie900302z11.
Buongiorno
, J.
, Venerus
, D. C.
, Prabhat
, N.
, McKrell
, T.
, Townsend
, J.
, Christianson
, R.
, Tolmachev
, Y. V.
, Keblinski
, P.
, Hu
, L.
, Alvarado
, J. L.
, Bang
, I. C.
, Bishnoi
, S. W.
, Bonetti
, M.
, Botz
, F.
, Cecere
, A.
, Chang
, Y.
, Chen
, G.
, Chen
, H.
, Chung
, S. J.
, Chyu
, M. K.
, Das
, S. K.
, Di Paola
, R.
, Ding
, Y.
, Dubois
, F.
, Dzido
, G.
, Eapen
, J.
, Escher
, W.
, Funfschilling
, D.
, Galand
, Q.
, Gao
, J.
, Gharagozloo
, P. E.
, Goodson
, K. E.
, Gutierrez
, J. G.
, Hong
, H.
, Horton
, M.
, Hwang
, K. S.
, Iorio
, C. S.
, Jang
, S. P.
, Jarzebski
, A. B.
, Jiang
, Y.
, Jin
, L.
, Kabelac
, S.
, Kamath
, A.
, Kedzierski
, M. A.
, Kieng
, L. G.
, Kim
, C.
, Kim
, J. H.
, Kim
, S.
, Lee
, S. H.
, Leong
, K. C.
, Manna
, I.
, Michel
, B.
, Ni
, R.
, Patel
, H. E.
, Philip
, J.
, Poulikakos
, D.
, Reynaud
, C.
, Savino
, R.
, Singh
, P. K.
, Song
, P.
, Sundararajan
, T.
, Timofeeva
, E.
, Tritcak
, T.
, Turanov
, A. N.
, Van Vaerenbergh
, S.
, Wen
, D.
, Witharana
, S.
, Yang
, C.
, Yeh
, W. H.
, Zhao
, X. Z.
, and Zhou
, S. Q.
, 2009
, “A Benchmark Study on the Thermal Conductivity of Nanofluids
,” J. Appl. Phys.
, 106
(9
), p. 094312
.10.1063/1.324533012.
Bruining
, W. J.
, Joosten
, G. E. H.
, Beenackers
, A. A. C. M.
, and Hofman
, H.
, 1986
, “Enhancement of Gas–Liquid Mass Transfer by a Dispersed Second Liquid Phase
,” Chem. Eng. Sci.
, 41
(7
), pp. 1873
–1877
.10.1016/0009-2509(86)87066-X13.
Mehra
, A.
, 1988
, “Intensification of Multiphase Reactions Through the Use of a Microphase—I. Theoretical
,” Chem. Eng. Sci.
, 43
(4
), pp. 899
–912
.10.1016/0009-2509(88)80086-114.
Komati
, S.
, 2009
, Mass Transfer Enhancement Using Nano-Magentic Iron-Oxide Particles
, Indian Institute of Technology Bombay
, Mumbai
.Copyright © 2015 by ASME
You do not currently have access to this content.