A multiscale modeling of the anisotropic slip phenomenon for gas flows is presented in a tree-step approach: determination of the gas–wall potential, simulation and modeling of the gas–wall collisions, simulation and modeling of the anisotropic slip effects. The density functional theory (DFT) is used to examine the interaction between the Pt–Ar gas–wall couple. This potential is then passed into molecular dynamics (MD) simulations of beam scattering experiments in order to calculate accommodation coefficients. These coefficients enter in an effective gas–wall interaction model, which is the base of efficient MD simulations of gas flows between anisotropic surfaces. The slip effects are quantified numerically and compared with simplified theoretical models derived in this paper. The paper demonstrates that the DFT potential is in good agreement with empirical potentials and that an extension of the Maxwell model can describe anisotropic slip effects due to surface roughness, provided that two tangential accommodation parameters are introduced. MD data show excellent agreement with the tensorial slip theory, except at large Kundsen numbers (for example, Kn 0.2) and with an analytical expression which predicts the ratio between transverse and longitudinal slip velocity components.
Skip Nav Destination
Article navigation
September 2015
This article was originally published in
Journal of Heat Transfer
Research-Article
Multiscale Study of Gas Slip Flows in Nanochannels
Quy Dong To,
Quy Dong To
Laboratoire Modélisation et
e-mail: quy-dong.to@univ-paris-est.fr
Simulation Multi Échelle
,UMR-CNRS 8208
,Université Paris-Est
,5 Boulevard Descartes
,Marne-la-Vallée Cedex 2 77454
, France
e-mail: quy-dong.to@univ-paris-est.fr
Search for other works by this author on:
Thanh Tung Pham,
Thanh Tung Pham
Laboratoire Modélisation et
Simulation Multi Échelle
,UMR-CNRS 8208
,Université Paris-Est
,5 Boulevard Descartes
,Marne-la-Vallée Cedex 2 77454
, France
Search for other works by this author on:
Vincent Brites,
Vincent Brites
1
Laboratoire Modélisation et
Simulation Multi Échelle
,UMR-CNRS 8208
,Université Paris-Est
,5 Boulevard Descartes
,Marne-la-Vallée Cedex 2 77454
, France
1Present address: Université d'Evry Val d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, LAMBE CNRS UMR 8587, Boulevard F. Mitterrand, Evry Cedex 91025, France.
Search for other works by this author on:
Céline Léonard,
Céline Léonard
Laboratoire Modélisation et
Simulation Multi Échelle
,UMR-CNRS 8208
,Université Paris-Est
,5 Boulevard Descartes
,Marne-la-Vallée Cedex 2 77454
, France
Search for other works by this author on:
Guy Lauriat
Guy Lauriat
Laboratoire Modélisation et
Simulation Multi Échelle
,UMR-CNRS 8208
,Université Paris-Est
,5 Boulevard Descartes
,Marne-la-Vallée Cedex 2 77454
, France
Search for other works by this author on:
Quy Dong To
Laboratoire Modélisation et
e-mail: quy-dong.to@univ-paris-est.fr
Simulation Multi Échelle
,UMR-CNRS 8208
,Université Paris-Est
,5 Boulevard Descartes
,Marne-la-Vallée Cedex 2 77454
, France
e-mail: quy-dong.to@univ-paris-est.fr
Thanh Tung Pham
Laboratoire Modélisation et
Simulation Multi Échelle
,UMR-CNRS 8208
,Université Paris-Est
,5 Boulevard Descartes
,Marne-la-Vallée Cedex 2 77454
, France
Vincent Brites
Laboratoire Modélisation et
Simulation Multi Échelle
,UMR-CNRS 8208
,Université Paris-Est
,5 Boulevard Descartes
,Marne-la-Vallée Cedex 2 77454
, France
Céline Léonard
Laboratoire Modélisation et
Simulation Multi Échelle
,UMR-CNRS 8208
,Université Paris-Est
,5 Boulevard Descartes
,Marne-la-Vallée Cedex 2 77454
, France
Guy Lauriat
Laboratoire Modélisation et
Simulation Multi Échelle
,UMR-CNRS 8208
,Université Paris-Est
,5 Boulevard Descartes
,Marne-la-Vallée Cedex 2 77454
, France
1Present address: Université d'Evry Val d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, LAMBE CNRS UMR 8587, Boulevard F. Mitterrand, Evry Cedex 91025, France.
Manuscript received January 6, 2014; final manuscript received March 17, 2014; published online May 14, 2015. Assoc. Editor: Yogesh Jaluria.
J. Heat Transfer. Sep 2015, 137(9): 091002 (8 pages)
Published Online: September 1, 2015
Article history
Received:
January 6, 2014
Revision Received:
March 17, 2014
Online:
May 14, 2015
Citation
To, Q. D., Pham, T. T., Brites, V., Léonard, C., and Lauriat, G. (September 1, 2015). "Multiscale Study of Gas Slip Flows in Nanochannels." ASME. J. Heat Transfer. September 2015; 137(9): 091002. https://doi.org/10.1115/1.4030205
Download citation file:
Get Email Alerts
Cited By
Ducted heat exchanger aerodynamic shape and thermal optimization
J. Heat Mass Transfer
A Simplified Thermal Hydraulic Model for Solid Pin-Fueled Molten Salt Reactors Under Low-Flow Accident Scenarios
J. Heat Mass Transfer (December 2024)
Effect of Forced Convection Heat Transfer on Vapor Quality in Subcooled Flow Boiling
J. Heat Mass Transfer (December 2024)
Related Articles
Adhesion and Interface Properties of Polydopamine and Polytetrafluoroethylene Thin Films
J. Appl. Mech (December,2020)
Ab Initio Molecular Dynamics Study of Nanoscale Thermal Energy Transport
J. Heat Transfer (December,2008)
Contribution of the Hydroxyl Group on Interfacial Heat Conduction of Monohydric Alcohols: A Molecular Dynamics Study
J. Heat Transfer (March,2020)
Molecular Dynamics Simulation of Adsorbent Layer Effect on Tangential Momentum Accommodation Coefficient
J. Fluids Eng (January,2007)
Related Proceedings Papers
Related Chapters
Understanding the Mechanistic Role of Lithium in Accelerated Corrosion of Zirconium Alloys Using Advanced Characterization and Atomistic Simulation
Zirconium in the Nuclear Industry: 20th International Symposium
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Re-entrant Gas Flows of High-speed Ventilated Supercavity
Proceedings of the 10th International Symposium on Cavitation (CAV2018)