A simple thermostat based on self-propelled Leidenfrost droplets is proposed and demonstrated. The proof-of-principle device sits on a heated hotplate, which provides the heat, but under dripping water which cools it. Using temperature dependent directionality of droplets on a substructured sawteeth surface, droplets are either discarded or fed into a region with high Leidenfrost temperature and enhanced heat-loss. The system can therefore adjust how much of the droplets’ cooling power it uses depending on its own temperature, and this feedback enables it to maintain a constant set temperature and act as a thermostat.
Issue Section:
Technical Brief
Keywords:
Bubbles,
Evaporation,
Two-phase flow,
Particles,
Droplets,
Boiling,
Condensation,
Heat transfer
References
1.
Leidenfrost
, J. G.
, 1756
, “De Aquae Communis Nonnullis Qualitatibus Tractatus, on the Fixation of Water in Diverse Fire
,” Int. J. Heat Mass Transfer
, 9
(11), p. 1153
[Translated by Wares, C., 1966
].10.1016/0017-9310(66)90111-62.
Vakarelski
, I. U.
, Patankar
, N. A.
, Marston
, J. O.
, Chan
, D. Y. C.
, and Thoroddsen
, S. T.
, 2012
, “Stabilization of Leidenfrost Vapour Layer by Textured Superhydrophobic Surface
,” Nature
, 489
(7415), pp. 274
–277
.10.1038/nature114183.
Abdelaziz
, R.
, Disci-Zayed
, D.
, Hedayati
, M. K.
, Pöhls
, J. H.
, Zillohu
, A. U.
, Erkartal
, B.
, Charkravadhanula
, V. S. K.
, Duppel
, V.
, Kienle
, L.
, and Elbahri
, M.
, 2013
, “Green Chemistry and Nanofabrication in a Levitated Leidenfrost Drop
,” Nat. Commun.
, 4
, p. 2400
.10.1038/ncomms34004.
Nukiyama
, S.
, 1934
, “The Maximum and Minimum Values of the Heat Q Transmitted From a Metal to Boiling Water Under Atmospheric Pressure
,” J. Jpn. Soc. Mech. Eng.
, 37
,p. 367
[English Translation by Lee, C. J., 1966, Int. J. Heat Mass Transfer, 9(12), pp. 1419–1433].5.
Kwon
, H. M.
, Bird
, J. C.
, and Varanasi
, K.
, 2013
, “Increasing the Leidenfrost Point using Micro-Nano Hierarchical Surface Structures
,” Appl. Phys. Lett.
, 103
(20), p. 201601
.10.1063/1.48286736.
Quéré
, D.
, 2013
, “Leidenfrost Dynamics
,” Annu. Rev. Fluid Mech.
, 45
, p. 197
.10.1146/annurev-fluid-011212-1407097.
Linke
, H.
, Aleman
, B. J.
, Melling
, L. D.
, Taormina
, M. J.
, Francis
, M. J.
, Dow-Hygelund
, C. C.
, Narayanan
, V.
, Taylor
, R. P.
, and Stout
, A.
, 2006
, “Self-Propelled Leidenfrost Droplets
,” Phys. Rev. Lett.
, 96
(15), p. 154502
.10.1103/PhysRevLett.96.1545028.
Grounds
, A.
, Still
, R.
, and Takashina
, K.
, 2012
, “Enhanced Droplet Control by Transition Boiling
,” Sci. Rep.
, 2
, p. 720
.10.1038/srep007209.
Bernardin
, J. D.
, and Mudawar
, I.
, 1999
, “The Leidenfrost Point: Experimental Study and Assessment of Existing Models
,” ASME J. Heat Transfer
, 121
(4
), pp. 894
–903
.10.1115/1.282608010.
Bernardin
, J. D.
, and Mudawar
, I.
, 2002
, “A Cavity Activation and Bubble Growthmodel of the Leidenfrost Point
,” ASME J. Heat Transfer
, 124
(5
), pp. 864
–874
.10.1115/1.147048711.
Dupeux
, G.
, Le Merrer
, M.
, Lagubeau
, G.
, Clanet
, C.
, Hardt
, S.
, and Quéré
, D.
, 2011
, “Viscous Mechanism for Leidenfrost Propulsion on a Ratchet
,” EPL
, 96
(5), p. 58001
.10.1209/0295-5075/96/5800112.
Baier
, T.
, Dupeux
, G.
, Herbert
, S.
, Hardt
, S.
, and Quéré
, D.
, 2013
, “Propulsion Mechanisms for Leidenfrost Solids on Ratchets
,” Phys. Rev. E
, 87R
(2), p. 021001
.10.1103/PhysRevE.87.021001Copyright © 2015 by ASME
You do not currently have access to this content.