A wide range of modern technological devices utilize materials structured at the nanoscale to improve performance. The efficiencies of many of these devices depend on their thermal transport properties; whether a high or low conductivity is desirable, control over thermal transport is crucial to the continued development of device performance. Here we review recent experimental, computational, and theoretical studies that have highlighted potential methods for controlling phonon-mediated heat transfer. We discuss those parameters that affect thermal boundary conductance, such as interface morphology and material composition, as well as the emergent effects due to several interfaces in close proximity, as in a multilayered structure or superlattice. Furthermore, we explore future research directions as well as some of the challenges related to improving device thermal performance through the implementation of phonon engineering techniques.

References

1.
Pop
,
E.
,
2010
, “
Energy Dissipation and Transport in Nanoscale Devices
,”
Nano Res.
,
3
, pp. 147–169.10.1007/s12274-010-1019-z
2.
Vining
,
C. B.
,
2009
, “
An Inconvenient Truth About Thermoelectrics
,”
Nat. Mater.
,
8
, pp. 83–85.10.1038/nmat2361
3.
Williams
,
B. S.
,
2007
, “
Terahertz Quantum-Cascade Lasers
,”
Nat. Photon.
,
1
, pp. 517–525.10.1038/nphoton.2007.166
4.
Wong
,
H.-S. P.
,
Raoux
,
S.
,
Kim
,
S.
,
Liang
,
J.
,
Reifenberg
,
J. P.
,
Rajendran
,
B.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2010
, “
Phase Change Memory
,”
Proc. IEEE
,
98
, pp. 2201–2227.10.1109/JPROC.2010.2070050
5.
Kim
,
W.
,
Wang
,
R.
, and
Majumdar
,
A.
,
2007
, “
Nanostructuring Expands Thermal Limits
,”
Nanotoday
,
2
, pp. 40–47.10.1016/S1748-0132(07)70018-X
6.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion
,
Oxford University Press
,
Oxford
.
7.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
, pp.
793
818
.10.1063/1.1524305
8.
Kapitza
,
P. L.
,
1941
, “
The Study of Heat Transfer in Helium II
,”
J. Phys. (USSR)
,
4
, pp. 181–210.
9.
Little
,
W. A.
,
1959
, “
The Transport of Heat Between Dissimilar Solids at Low Temperatures
,”
Can. J. Phys.
,
37
, pp. 334–349.10.1139/p59-037
10.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
, pp. 605–668.10.1103/RevModPhys.61.605
11.
Stoner
,
R. J.
, and
Maris
,
H. J.
,
1993
, “
Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K
,”
Phys. Rev. B
,
48
, pp. 16373–16387.10.1103/PhysRevB.48.16373
12.
Beechem
,
T.
,
Duda
,
J. C.
,
Hopkins
,
P. E.
, and
Norris
,
P. M.
,
2010
, “
Contribution of Optical Phonons to Thermal Boundary Conductance
,”
Appl. Phys. Lett.
,
97
, p.
061907
.10.1063/1.3478844
13.
Duda
,
J. C.
,
Beechem
,
T. E.
,
Smoyer
,
J. L.
,
Norris
,
P. M.
, and
Hopkins
,
P. E.
,
2010
, “
Role of Dispersion on Phononic Thermal Boundary Conductance
,”
J. Appl. Phys.
,
108
, p.
073515
.10.1063/1.3483943
14.
Reddy
,
P.
,
Castelino
,
K.
, and
Majumdar
,
A.
,
2005
, “
Diffuse Mismatch Model of Thermal Boundary Conductance Using Exact Phonon Dispersion
,”
Appl. Phys. Lett.
,
87
, p.
211908
.10.1063/1.2133890
15.
Hopkins
,
P. E.
, and
Norris
,
P. M.
,
2007
, “
Effects of Joint Vibrational States on Thermal Boundary Conductance
,”
Nanoscale Microscale Thermophys. Eng.
,
11
, pp. 247–257.10.1080/15567260701715297
16.
Hopkins
,
P. E.
,
2009
, “
Multiple Phonon Processes Contributing to Inelastic Scattering During Thermal Boundary Conductance at Solid Interfaces
,”
J. Appl. Phys.
,
106
, p.
013528
.10.1063/1.3169515
17.
Hopkins
,
P. E.
,
Duda
,
J. C.
, and
Norris
,
P. M.
,
2011
, “
Anharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary Conductance
,”
ASME J. Heat Transfer
,
133
(6), p.
062401
.10.1115/1.4003549
18.
Beechem
,
T.
,
Graham
,
S.
,
Hopkins
,
P.
, and
Norris
,
P.
,
2007
, “
Role of Interface Disorder on Thermal Boundary Conductance Using a Virtual Crystal Approach
,”
Appl. Phys. Lett.
,
90
, p.
054104
.10.1063/1.2437685
19.
Hopkins
,
P. E.
,
Norris
,
P. M.
,
Stevens
,
R. J.
,
Beechem
,
T. E.
, and
Graham
,
S.
,
2008
, “
Influence of Interfacial Mixing on Thermal Boundary Conductance Across a Chromium/Silicon Interface
,”
ASME J. Heat Transfer
,
130
(6), p.
062402
.10.1115/1.2897344
20.
Hopkins
,
P. E.
,
Phinney
,
L. M.
,
Serrano
,
J. R.
, and
Beechem
,
T. E.
,
2010
, “
Effects of Surface Roughness and Oxide Layer on the Thermal Boundary Conductance at Aluminum/Silicon Interfaces
,”
Phys. Rev. B
,
82
, p.
085307
.10.1103/PhysRevB.82.085307
21.
Hopkins
,
P. E.
,
Duda
,
J. C.
,
Clark
,
S. P.
,
Hains
,
C. P.
,
Rotter
,
T. J.
,
Phinney
,
L. M.
, and
Balakrishnan
,
G.
,
2011
, “
Effect of Dislocation Density on Thermal Boundary Conductance Across GaSb/GaAs Interfaces
,”
Appl. Phys. Lett.
,
98
, p.
161913
.10.1063/1.3581041
22.
Hopkins
,
P. E.
,
Duda
,
J. C.
,
Petz
,
C. W.
, and
Floro
,
J. A.
,
2011
, “
Controlling Thermal Conductance Through Quantum Dot Roughening at Interfaces
,”
Phys. Rev. B
,
84
, p.
035438
.10.1103/PhysRevB.84.035438
23.
Stevens
,
R. J.
,
Smith
,
A. N.
, and
Norris
,
P. M.
,
2005
, “
Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique
,”
ASME J. Heat Transfer
,
127
(3), pp. 315–322.10.1115/1.1857944
24.
Lyeo
,
H.-K.
, and
Cahill
,
D. G.
,
2006
, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
,
73
, p.
144301
.10.1103/PhysRevB.73.144301
25.
Twu
,
C.-J.
, and
Ho
,
J.-R.
,
2003
, “
Molecular-Dynamics Study of Energy Flow and the Kapitza Conductance Across an Interface With Imperfection Formed by Two Dielectric Thin Films
,”
Phys. Rev. B
,
67
, p.
205422
.10.1103/PhysRevB.67.205422
26.
Stevens
,
R. J.
,
Zhigilei
,
L. V.
, and
Norris
,
P. M.
,
2007
, “
Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid-Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations
,”
Int. J. Heat Mass Transfer
,
50
, pp. 3977–3989.10.1016/j.ijheatmasstransfer.2007.01.040
27.
Hu
,
M.
,
Keblinski
,
P.
, and
Schelling
,
P. K.
,
2009
, “
Kapitza Conductance of Silicon–Amorphous Polyethylene Interfaces by Molecular Dynamics Simulations
,”
Phys. Rev. B
,
79
, p.
104305
.10.1103/PhysRevB.79.104305
28.
Landry
,
E. S.
, and
McGaughey
,
A. J. H.
,
2009
, “
Thermal Boundary Resistance Predictions From Molecular Dynamics Simulations and Theoretical Calculations
,”
Phys. Rev. B
,
80
, p.
165304
.10.1103/PhysRevB.80.165304
29.
Lyver
, IV,
J. W.
, and
Blaisten-Barojas
,
E.
,
2009
, “
Effects of the Interface Between Two Lennard-Jones Crystals on the Lattice Vibrations: A Molecular Dynamics Study
,”
J. Phys.: Condens. Matter
,
21
, p.
345402
.10.1088/0953-8984/21/34/345402
30.
Wang
,
S.
, and
Liang
,
X.
,
2010
, “
Thermal Conductivity and Interfacial Thermal Resistance in Bilayered Nanofilms by Nonequilibrium Molecular Dynamics Simulations
,”
Int. J. Thermophys.
,
31
, pp. 1935–1944.10.1007/s10765-008-0523-9
31.
Ju
,
S.
,
Liang
,
X.
, and
Wang
,
S.
,
2010
, “
Investigation of Interfacial Thermal Resistance of Bi-Layer Nanofilms by Nonequilibrium Molecular Dynamics
,”
J. Phys. D: Appl. Phys.
,
43
, p.
085407
.10.1088/0022-3727/43/8/085407
32.
Shen
,
M.
,
Evans
,
W. J.
,
Cahill
,
D.
, and
Keblinski
,
P.
,
2011
, “
Bonding and Pressure–Tunable Interfacial Thermal Conductance
,”
Phys. Rev. B
,
84
, p.
195432
.10.1103/PhysRevB.84.195432
33.
Shin
,
S.
,
Kaviany
,
M.
,
Desai
,
T.
, and
Bonner
,
R.
,
2010
, “
Roles of Atomic Restructuring in Interfacial Phonon Transport
,”
Phys. Rev. B
,
82
, p.
081302
.10.1103/PhysRevB.82.081302
34.
Duda
,
J. C.
,
English
,
T. S.
,
Piekos
,
E. S.
,
Soffa
,
W. A.
,
Zhigilei
,
L. V.
, and
Hopkins
,
P. E.
,
2011
, “
Implications of Cross-Species Interactions on the Temperature Dependence of Kapitza Conductance
,”
Phys. Rev. B
,
84
, p.
193301
.10.1103/PhysRevB.84.193301
35.
English
,
T. S.
,
Duda
,
J. C.
,
Smoyer
,
J. L.
,
Jordan
,
D. A.
,
Norris
,
P. M.
, and
Zhigilei
,
L. V.
,
2012
, “
Enhancing and Tuning Phonon Transport at Vibrationally Mismatched Solid–Solid Interfaces
,”
Phys. Rev. B
,
85
, p.
035438
.10.1103/PhysRevB.85.035438
36.
Hopkins
,
P. E.
,
Salaway
,
R. N.
,
Stevens
,
R. J.
, and
Norris
,
P. M.
,
2007
, “
Temperature-Dependent Thermal Boundary Conductance at Al/Al2O3 and Pt/Al2O3 Interfaces
,”
Int. J. Thermophys.
,
28
, pp. 947–957.10.1007/s10765-007-0236-5
37.
Hopkins
,
P. E.
,
Norris
,
P. M.
, and
Stevens
,
R. J.
,
2008
, “
Influence of Inelastic Scattering at Metal-Dielectric Interfaces
,”
ASME J. Heat Transfer
,
130
(2), p.
022401
.10.1115/1.2787025
38.
Luo
,
T.
, and
Lloyd
,
J. R.
,
2010
, “
Non-Equilibrium Molecular Dynamics Study of Thermal Energy Transport in Au-SAM-Au Junctions
,”
Int. J. Heat Mass Transfer
,
53
, pp. 1–11.10.1016/j.ijheatmasstransfer.2009.10.033
39.
Luo
,
T.
, and
Lloyd
,
J. R.
,
2010
, “
Equilibrium Molecular Dynamics Study of Lattice Thermal Conductivity/Conductance of Au-SAM-Au Junctions
,”
ASME J. Heat Transfer
,
132
(3), p.
032401
.10.1115/1.4000047
40.
Luo
,
T.
, and
Lloyd
,
J. R.
,
2011
, “
Molecular Dynamics Study of Thermal Transport in GaAs-Self-Assembly Monolayer-GaAs Junctions With Ab Initio Characterization of Thiol-GaAs Bonds
,”
J. Appl. Phys.
,
109
, p.
034301
.10.1063/1.3530685
41.
Duda
,
J. C.
,
Norris
,
P. M.
, and
Hopkins
,
P. E.
,
2011
, “
On the Linear Temperature Dependence of Phonon Thermal Boundary Conductance in the Classical Limit
,”
ASME J. Heat Transfer
,
133
(7), p.
074501
.10.1115/1.4003575
42.
Holland
,
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
, pp. 2461–2471.10.1103/PhysRev.132.2461
43.
Slack
,
G. A.
, and
Galginaitis
,
S.
,
1964
, “
Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe
,”
Phys. Rev.
,
133
, pp. A253–A268.10.1103/PhysRev.133.A253
44.
Ward
,
A.
, and
Broido
,
D. A.
,
2010
, “
Intrinsic Phonon Relaxation Times From First-Principles Studies of the Thermal Conductivities of Si and Ge
,”
Phys. Rev. B
,
81
, p.
085205
.10.1103/PhysRevB.81.085205
45.
Prasher
,
R.
,
2009
, “
Acoustic Mismatch Model for Thermal Contact Resistance of van der Waals Contacts
,”
Appl. Phys. Lett.
,
94
, p.
041905
.10.1063/1.3075065
46.
Young
,
D. A.
, and
Maris
,
H. J.
,
1989
, “
Lattice-Dynamical Calculation of the Kapitza Resistance Between fcc Lattices
,”
Phys. Rev. B
,
40
, pp. 3685–3693.10.1103/PhysRevB.40.3685
47.
Persson
,
B. N. J.
,
Volokitin
,
A. I.
, and
Ueba
,
H.
,
2011
, “
Phononic Heat Transfer Across an Interface: Thermal Boundary Resistance
,”
J. Phys.: Condens. Matter
,
23
, p.
045009
.10.1088/0953-8984/23/4/045009
48.
Howe
,
J. M.
,
1997
,
Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid-Vapor, Solid-Liquid, and Solid-Solid Interfaces
,
John Wiley
,
New York
.
49.
Porter
,
D. A.
, and
Easterling
,
K. E.
,
1981
,
Phase Transformations in Metals and Alloys
,
Chapman and Hall
,
Englewood Cliffs, NJ
.
50.
Ong
,
Z.-Y.
, and
Pop
,
E.
,
2010
, “
Molecular Dynamics Simulation of Thermal Boundary Conductance Between Carbon Nanotubes and SiO2
,”
Phys. Rev. B,
81
, p.
155408
.10.1103/PhysRevB.81.155408
51.
Li
,
X.
, and
Yang
,
R.
,
2012
, “
Effect of Lattice Mismatch on Phonon Transmission and Interface Thermal Conductance Across Dissimilar Material Interfaces
,”
Phys. Rev. B
,
86
, p.
054305
.10.1103/PhysRevB.86.054305
52.
O'Brien
,
P. J.
,
Shenogin
,
S.
,
Liu
,
J.
,
Chow
,
P. K.
,
Laurencin
,
D.
,
Mutin
,
P. H.
,
Yamaguchi
,
M.
,
Keblinski
,
P.
, and
Ramanath
,
G.
,
2013
, “
Bonding-Induced Thermal Conductance Enhancement at Inorganic Heterointerfaces Using Nanomolecular Monolayers
,”
Nat. Mater.
,
12
, pp. 118–122.10.1038/NMAT3465
53.
Wang
,
Y.
, and
Keblinski
,
P.
,
2011
, “
Role of Wetting and Nanoscale Roughness on Thermal Conductance at Liquid–Solid Interface
,”
Appl. Phys. Lett.
,
99
, p.
073112
.10.1063/1.3626850
54.
Losego
,
M. D.
,
Grady
,
M. E.
,
Sottos
,
N. R.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2012
, “
Effects of Chemical Bonding on Heat Transport Across Interfaces
,”
Nat. Mater.
,
11
, pp. 502–506.10.1038/nmat3303
55.
Collins
,
K. C.
,
Chen
,
S.
, and
Chen
,
G.
,
2010
, “
Effects of Surface Chemistry on Thermal Conductance at Aluminum-Diamond Interfaces
,”
Appl. Phys. Lett.
,
97
, p.
083102
.10.1063/1.3480413
56.
Hopkins
,
P. E.
,
Baraket
,
M.
,
Barnat
,
E. V.
,
Beechem
,
T. E.
,
Kearney
,
S. P.
,
Duda
,
J. C.
,
Robinson
,
J. T.
, and
Walton
,
S. G.
,
2012
, “
Manipulating Thermal Conductance at Metal-Graphene Contacts via Chemical Functionalization
,”
Nano Lett.
,
12
, pp. 590–595.10.1021/nl203060j
57.
Liu
,
H.
,
Zeng
,
H.
,
Pan
,
T.
,
Huang
,
W.
, and
Lin
,
Y.
,
2012
, “
Pressure Dependency of Thermal Boundary Conductance of Carbon Nanotube/Silicon Interface: A Molecular Dynamics Study
,”
J. Appl. Phys.
,
112
, p.
053501
.10.1063/1.4749798
58.
Hsieh
,
W.-P.
,
Lyons
,
A. S.
,
Pop
,
E.
,
Keblinski
,
P.
, and
Cahill
,
D. G.
,
2011
, “
Pressure Tuning of the Thermal Conductance of Weak Interfaces
,”
Phys. Rev. B
,
84
, p.
184107
.10.1103/PhysRevB.84.184107
59.
Zhao
,
H.
, and
Freund
,
J. B.
,
2009
, “
Phonon Scattering at a Rough Interface Between Two fcc Lattices
,”
J. Appl. Phys.
,
105
, p.
013515
.10.1063/1.3054383
60.
Kechrakos
,
D.
,
1990
, “
The Phonon Boundary Scattering Cross Section at Disordered Crystalline Interfaces: A Simple Model
,”
J. Phys.: Condens. Matter
,
2
, pp. 2637–2652.10.1088/0953-8984/2/11/009
61.
Kechrakos
,
D.
,
1991
, “
The Role of Interface Disorder in the Thermal Boundary Conductivity Between Two Crystals
,”
J. Phys.: Condens. Matter
,
3
, pp. 1443–1452.10.1088/0953-8984/3/11/006
62.
Fagas
,
G.
,
Kozorezov
,
A. G.
,
Lambert
,
C. J.
,
Wigmore
,
J. K.
,
Peacock
,
A.
,
Peolaert
,
A.
, and
den Hartog
,
R.
,
1999
, “
Lattice Dynamics of a Disordered Solid-Solid Interface
,”
Phys. Rev. B
,
60
, pp. 6459–6464.10.1103/PhysRevB.60.6459
63.
Sun
,
H.
, and
Pipe
,
K. P.
,
2012
, “
Perturbation Analysis of Acoustic Wave Scattering at Rough Solid-Solid Interfaces
,”
J. Appl. Phys.
,
111
, p.
023510
.10.1063/1.3676250
64.
Duda
,
J. C.
, and
Hopkins
,
P. E.
,
2012
, “
Systematically Controlling Kapitza Conductance via Chemical Etching
,”
Appl. Phys. Lett.
,
100
, p.
111602
.10.1063/1.3695058
65.
Liang
,
X.-G.
, and
Sun
,
L.
,
2005
, “
Interface Structure Influence on Thermal Resistance Across Double-Layered Nanofilms
,”
Microscale Thermophys. Eng.
,
9
, pp. 295–304.10.1080/10893950500196469
66.
Choi
,
W. I.
,
Kim
,
K.
, and
Narumanchi
,
S.
,
2012
, “
Thermal Conductance at Atomically Clean and Disordered Silicon/Aluminum Interfaces: A Molecular Dynamics Simulation Study
,”
J. Appl. Phys.
,
112
, p.
054305
.10.1063/1.4748872
67.
Hopkins
,
P. E.
, and
Norris
,
P. M.
,
2006
, “
Thermal Boundary Conductance Response to a Change in Cr/Si Interfacial Properties
,”
Appl. Phys. Lett.
,
89
, p.
131909
.10.1063/1.2357585
68.
Kozorezov
,
A. G.
,
Wigmore
,
J. K.
,
Erd
,
C.
,
Peacock
,
A.
, and
Poelaert
,
A.
,
1998
, “
Scattering-Mediated Transmission and Reflection of High-Frequency Phonons at a Nonideal Solid-Solid Interface
,”
Phys. Rev. B
,
57
, pp. 7411–7414.10.1103/PhysRevB.57.7411
69.
Prasher
,
R. S.
, and
Phelan
,
P. E.
,
2001
, “
A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance
,”
ASME J. Heat Transfer
,
123
(1), pp. 105–112.10.1115/1.1338138
70.
Hopkins
,
P. E.
,
Hattar
,
K.
,
Beechem
,
T.
,
Ihlefeld
,
J. F.
,
Medlin
,
D. L.
, and
Piekos
,
E. S.
,
2011
, “
Reduction in Thermal Boundary Conductance Due to Proton Implantation in Silicon and Sapphire
,”
Appl. Phys. Lett.
,
98
, p.
231901
.10.1063/1.3592822
71.
Hopkins
,
P. E.
,
Hattar
,
K.
,
Beechem
,
T.
,
Ihlefeld
,
J. F.
,
Medlin
,
D. L.
, and
Piekos
,
E. S.
,
2012
, “
Addendum: Reduction in Thermal Boundary Conductance Due to Proton Implantation in Silicon and Sapphire
,”
Appl. Phys. Lett.
,
101
, p.
099903
.10.1063/1.4750247
72.
Norris
,
P. M.
,
Smoyer
,
J. L.
,
Duda
,
J. C.
, and
Hopkins
,
P. E.
,
2012
, “
Prediction and Measurement of Thermal Transport Across Interfaces Between Isotropic Solids and Graphitic Materials
,”
ASME J. Heat Transfer
,
134
(2), p.
020910
.10.1115/1.4004932
73.
Kato
,
R.
, and
Hatta
,
I.
,
2008
, “
Thermal Conductivity and Interfacial Thermal Resistance: Measurements of Thermally Oxidized SiO2 Films on a Silicon Wafer Using a Thermo-Reflectance Technique
,”
Int. J. Thermophys.
,
29
, pp. 2062–2071.10.1007/s10765-008-0536-4
74.
Monachon
,
C.
,
Hojeij
,
M.
, and
Weber
,
L.
,
2011
, “
Influence of Sample Processing Parameters on Thermal Boundary Conductance Value in an Al/AlN System
,”
Appl. Phys. Lett.
,
98
, p.
091905
.10.1063/1.3560469
75.
Huberman
,
M. L.
, and
Overhauser
,
A. W.
,
1994
, “
Electronic Kapitza Conductance at a Diamond-Pb Interface
,”
Phys. Rev. B
,
50
, pp. 2865–2873.10.1103/PhysRevB.50.2865
76.
Sergeev
,
A. V.
,
1998
, “
Electronic Kapitza Conductance Due to Inelastic Electron-Boundary Scattering
,”
Phys. Rev. B
,
58
, pp. R10199–R10202.10.1103/PhysRevB.58.R10199
77.
Mahan
,
G. D.
,
2009
, “
Kapitza Thermal Resistance Between a Metal and a Nonmetal
,”
Phys. Rev. B
,
79
, p.
075408
.10.1103/PhysRevB.79.075408
78.
Hopkins
,
P. E.
, and
Norris
,
P. M.
,
2007
, “
Substrate Influence in Electron–Phonon Coupling Measurements in Thin Au Films
,”
Appl. Surf. Sci.
,
253
, pp. 6289–6294.10.1016/j.apsusc.2007.01.065
79.
Hopkins
,
P. E.
,
Kassebaum
,
J. L.
, and
Norris
,
P. M.
,
2009
, “
Effects of Electron Scattering at Metal-Nonmetal Interfaces on Electron-Phonon Equilibration in Gold Films
,”
J. Appl. Phys.
,
105
, p.
023710
.10.1063/1.3068476
80.
Kazan
,
M.
,
2011
, “
Interpolation Between the Acoustic Mismatch Model and the Diffuse Mismatch Model for the Interface Thermal Conductance: Application of InN/GaN Superlattice
,”
ASME J. Heat Transfer
,
133
(11), p.
112401
.10.1115/1.4004341
81.
Henry
,
A. S.
, and
Chen
,
G.
,
2008
, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
,
5
, pp. 141–152.
82.
Minnich
,
A. J.
,
Johnson
,
J. A.
,
Schmidt
,
A. J.
,
Esfarjani
,
K.
,
Dresselhaus
,
M. S.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2011
, “
Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
,”
Phys. Rev. Lett.
,
107
, p.
095901
.10.1103/PhysRevLett.107.095901
83.
Chen
,
G.
, and
Neagu
,
M.
,
1997
, “
Thermal Conductivity and Heat Transfer in Superlattices,”
Appl. Phys. Lett.
,
71
, pp. 2761–2763.10.1063/1.120126
84.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
, pp. 14958–14973.10.1103/PhysRevB.57.14958
85.
Singh
,
D.
,
Murthy
,
J. Y.
, and
Fisher
,
T. S.
,
2011
, “
Effect of Phonon Dispersion on Thermal Conduction Across Si/Ge Interfaces
,”
ASME J. Heat Transfer
,
133
(12), p.
122401
.10.1115/1.4004429
86.
Garg
,
J.
,
Bonini
,
N.
, and
Marzari
,
N.
,
2011
, “
High Thermal Conductivity in Short-Period Superlattices
,”
Nano Lett.
,
11
, pp. 5135–5141.10.1021/nl202186y
87.
Hyldgaard
,
P.
, and
Mahan
,
G. D.
,
1997
, “
Phonon Superlattice Transport
,”
Phys. Rev. B
,
56
, pp. 10754–10757.10.1103/PhysRevB.56.10754
88.
Tamura
,
S.-I.
,
Tanaka
,
Y.
, and
Maris
,
H. J.
,
1999
, “
Phonon Group Velocity and Thermal Conduction in Superlattices
,”
Phys. Rev. B
,
60
, pp.
2627
2630
.10.1103/PhysRevB.60.2627
89.
Simkin
,
M. V.
, and
Mahan
,
G. D.
,
2000
, “
Minimum Thermal Conductivity of Superlattices
,”
Phys. Rev. Lett.
,
84
, pp. 927–930.10.1103/PhysRevLett.84.927
90.
Ren
,
S.-F.
,
Cheng
,
W.
, and
Chen
,
G.
,
2006
, “
Lattice Dynamics Investigations of Phonon Thermal Conductivity of Si/Ge Superlattices With Rough Interfaces
,”
J. Appl. Phys.
,
100
, p.
103505
.10.1063/1.2384810
91.
Hepplestone
,
S. P.
, and
Srivastava
,
G. P.
,
2010
, “
Phononic Gaps in Thin Semiconductor Superlattices
,”
J. Appl. Phys.
,
107
, p.
043504
.10.1063/1.3285415
92.
Nika
,
D. L.
,
Pokatilov
,
E. P.
,
Balandin
,
A. A.
,
Fomin
,
V. M.
,
Rastelli
,
A.
, and
Schmidt
,
O. G.
,
2011
, “
Reduction of Lattice Thermal Conductivity in One-Dimensional Quantum-Dot Superlattices Due to Phonon Filtering
,”
Phys. Rev. B
,
84
, p.
165415
.10.1103/PhysRevB.84.165415
93.
Ren
,
S. Y.
, and
Dow
,
J. D.
,
1982
, “
Thermal Conductivity of Superlattices
,”
Phys. Rev. B
,
25
, pp. 3750–3755.10.1103/PhysRevB.25.3750
94.
Volz
,
S.
,
Saulnier
,
J. B.
,
Chen
,
G.
, and
Beauchamp
,
P.
,
2000
, “
Computation of Thermal Conductivity of Si/Ge Superlattices by Molecular Dynamics Techniques
,”
Microelectron. J.
,
31
, pp. 815–819.10.1016/S0026-2692(00)00064-1
95.
Daly
,
B. C.
,
Maris
,
H. J.
,
Imamura
,
K.
, and
Tamura
,
S.
,
2002
, “
Molecular Dynamics Calculation of the Thermal Conductivities of Superlattices
,”
Phys. Rev. B
,
66
, p.
024301
.10.1103/PhysRevB.66.024301
96.
Chen
,
Y.
,
Li
,
D.
,
Lukes
,
J. R.
,
Ni
,
Z.
, and
Chen
,
M.
,
2005
, “
Minimum Superlattice Thermal Conductivity From Molecular Dynamics
,”
Phys. Rev. B
,
72
, p.
174302
.10.1103/PhysRevB.72.174302
97.
McGaughey
,
A. J. H.
,
Hussein
,
M. I.
,
Landry
,
E. S.
,
Kaviany
,
M.
, and
Hulbert
,
G. M.
,
2006
, “
Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal
,”
Phys. Rev. B
,
74
, p.
104304
.10.1103/PhysRevB.74.104304
98.
Landry
,
E. S.
,
Hussein
,
M. I.
, and
McGaughey
,
A. J. H.
,
2008
, “
Complex Superlattice Unit Cell Designs for Reduced Thermal Conductivity
,”
Phys. Rev. B
,
77
, p.
184302
.10.1103/PhysRevB.77.184302
99.
Landry
,
E. S.
, and
McGaughey
,
A. J. H.
,
2009
, “
Effect of Interfacial Species Mixing on Phonon Transport in Semiconductor Superlattices
,”
Phys. Rev. B
,
79
, p.
075316
.10.1103/PhysRevB.79.075316
100.
Termentzidis
,
K.
,
Chantrenne
,
P.
, and
Keblinski
,
P.
,
2009
, “
Nonequilibrium Molecular Dynamics Simulation of the In-Plane Thermal Conductivity of Superlattices With Rough Interfaces
,”
Phys. Rev. B
,
79
, p.
214307
.10.1103/PhysRevB.79.214307
101.
Chalopin
,
Y.
,
Esfarjani
,
K.
,
Henry
,
A.
,
Volz
,
S.
, and
Chen
,
G.
,
2012
, “
Thermal Interface Conductance in Si/Ge Superlattices by Equilibrium Molecular Dynamics
,”
Phys. Rev. B
,
85
, p.
195302
.10.1103/PhysRevB.85.195302
102.
Frachioni
,
A.
, and
White
,
B. E.
, Jr.
,
2012
, “
Simulated Thermal Conductivity of Silicon-Based Random Multilayer Thin Films
,”
J. Appl. Phys.
,
112
, p.
014320
.10.1063/1.4733351
103.
Narayanamurti
,
V.
,
Störmer
,
H. L.
,
Chin
,
M. A.
,
Gossard
,
A. C.
, and
Wiegmann
,
W.
,
1979
, “
Selective Transmission of High-Frequency Phonons by a Superlattice: The ‘Dielectric’ Phonon Filter
,”
Phys. Rev. Lett.
,
43
, pp. 2012–2016.10.1103/PhysRevLett.43.2012
104.
Colvard
,
C.
,
Gant
,
T. A.
,
Klein
,
M. V.
,
Merlin
,
R.
,
Fischer
,
R.
,
Morkoc
,
H.
, and
Gossard
,
A. C.
,
1985
, “
Folded Acoustic and Quantized Optic Phonons in (GaAl)As Superlattices
,”
Phys. Rev. B
,
31
, pp. 2080–2091.10.1103/PhysRevB.31.2080
105.
Yamamoto
,
A.
,
Mishina
,
T.
,
Masumoto
,
Y.
, and
Nakayama
,
M.
,
1994
, “
Coherent Oscillation of Zone-Folded Phonon Modes in GaAs-AlAs Superlattices
,”
Phys. Rev. Lett.
,
73
, pp. 740–743.10.1103/PhysRevLett.73.740
106.
Bartels
,
A.
,
Dekorsy
,
T.
,
Kurz
,
H.
, and
Köhler
,
K.
,
1999
, “
Coherent Zone-Folded Longitudinal Acoustic Phonons in Semiconductor Superlattices: Excitation and Detection
,”
Phys. Rev. Lett.
,
82
, pp. 1044–1047.10.1103/PhysRevLett.82.1044
107.
Yao
,
T.
,
1987
, “
Thermal Properties of AlAs/GaAs Superlattices
,”
Appl. Phys. Lett.
,
51
, pp. 1798–1800.10.1063/1.98526
108.
Yu
,
X. Y.
,
Chen
,
G.
,
Verma
,
A.
, and
Smith
,
J. S.
,
1995
, “
Temperature Dependence of Thermophysical Properties of GaAs/AlAs Periodic Structure
,”
Appl. Phys. Lett.
,
67
, pp. 3554–3556.10.1063/1.114919
109.
Lee
,
S.-M.
,
Cahill
,
D. G.
, and
Venkatasubramanian
,
R.
,
1997
, “
Thermal Conductivity of Si–Ge Superlattices
,”
Appl. Phys. Lett.
,
70
, pp. 2957–2959.10.1063/1.118755
110.
Venkatasubramanian
,
R.
,
2000
, “
Lattice Thermal Conductivity Reduction and Phonon Localizationlike Behavior in Superlattice Structures
,”
Phys. Rev. B
,
61
, pp. 3091–3097.10.1103/PhysRevB.61.3091
111.
Song
,
D. W.
,
Liu
,
W. L.
,
Zeng
,
T.
,
Borca-Tasciuc
,
T.
,
Chen
,
G.
,
Caylor
,
J. C.
, and
Sands
,
T. D.
,
2000
, “
Thermal Conductivity of Skutterudite Thin Films and Superlattices
,”
Appl. Phys. Lett.
,
77
, pp. 3854–3856.10.1063/1.1329633
112.
Borca-Tasciuc
,
T.
,
Liu
,
W.
,
Liu
,
J.
,
Zeng
,
T.
,
Song
,
D. W.
,
Moore
,
C. D.
,
Chen
,
G.
,
Wang
,
K. L.
,
Goorsky
,
M. S.
,
Radetic
,
T.
,
Gronsky
,
R.
,
Koga
,
T.
, and
Dresselhaus
,
M. S.
,
2000
, “
Thermal Conductivity of Symmetrically Strained Si/Ge Superlattices
,”
Superlattices Microstruct.
,
28
, pp. 199–206.10.1006/spmi.2000.0900
113.
Cahill
,
D. G.
,
Bullen
,
A.
, and
Lee
,
S.-M.
,
2000
, “
Interface Thermal Conductance and the Thermal Conductivity of Multilayer Thin Films
,”
High Temp.-High Press.
,
32
, pp. 135–142.10.1068/htwi9
114.
Borca-Tasciuc
,
T.
,
Achimov
,
D.
,
Liu
,
W. L.
,
Chen
,
G.
,
Ren
,
H.-W.
,
Lin
,
C.-H.
, and
Pei
,
S. S.
,
2001
, “
Thermal Conductivity of InAs/AlSb Superlattices
,”
Microscale Thermophys. Eng.
,
5
, pp. 225–231.10.1080/108939501753222896
115.
Huxtable
,
S. T.
,
Abramson
,
A. R.
,
Tien
,
C.-L.
,
Majumdar
,
A.
,
LaBounty
,
C.
,
Fan
,
X.
,
Zeng
,
G.
,
Bowers
,
J. E.
,
Shakouri
,
A.
, and
Croke
,
E. T.
,
2002
, “
Thermal Conductivity of Si/SiGe and SiGe/SiGe Superlattices
,”
Appl. Phys. Lett.
,
80
, pp. 1737–1739.10.1063/1.1455693
116.
Chakraborty
,
S.
,
Kleint
,
C. A.
,
Heinrich
,
A.
,
Schneider
,
C. M.
,
Schumann
,
J.
,
Falke
,
M.
, and
Teichert
,
S.
,
2003
, “
Thermal Conductivity in Strain Symmetrized Si/Ge Superlattices on Si(111)
,”
Appl. Phys. Lett.
,
83
, pp. 4184–4186.10.1063/1.1628819
117.
Zhang
,
Y.
,
Chen
,
Y.
,
Gong
,
C.
,
Yang
,
J.
,
Qian
,
R.
, and
Wang
,
Y.
,
2007
, “
Optimization of Superlattice Thermoelectric Materials and Microcoolers
,”
J. Microelectromech. Syst.
,
16
, pp. 1113–1119.10.1109/JMEMS.2007.900884
118.
Duquesne
,
J.-Y.
,
2009
, “
Thermal Conductivity of Semiconductor Superlattices: Experimental Study of Interface Scattering
,”
Phys. Rev. B
,
79
, p.
153304
.10.1103/PhysRevB.79.153304
119.
Tong
,
H.
,
Miao
,
X. S.
,
Cheng
,
X. M.
,
Wang
,
H.
,
Zhang
,
L.
,
Sun
,
J. J.
,
Tong
,
F.
, and
Wang
,
J. H.
,
2011
, “
Thermal Conductivity of Chalcogenide Material With Superlatticelike Structure
,”
Appl. Phys. Lett.
,
98
, p.
101904
.10.1063/1.3562610
120.
Capinski
,
W. S.
,
Maris
,
H. J.
,
Ruf
,
T.
,
Cardona
,
M.
,
Ploog
,
K.
, and
Katzer
,
D. S.
,
1999
, “
Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique
,”
Phys. Rev. B
,
59
, pp. 8105–8113.10.1103/PhysRevB.59.8105
121.
Touzelbaev
,
M. N.
,
Zhou
,
P.
,
Venkatasubramanian
,
R.
, and
Goodson
,
K. E.
,
2001
, “
Thermal Characterization of Bi2Te3/Sb2Te3 Superlattices
,”
J. Appl. Phys.
,
90
, pp. 763–767.10.1063/1.1374458
122.
Costescu
,
R. M.
,
Cahill
,
D. G.
,
Fabreguette
,
F. H.
,
Sechrist
,
Z. A.
, and
George
,
S. M.
,
2004
, “
Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates
,”
Science
,
303
, pp. 989–990.10.1126/science.1093711
123.
Koh
,
Y. K.
,
Cao, Y., Cahill
,
D. G.
, and
Jena
,
D.
,
2009
, “
Heat-Transport Mechanisms in Superlattices
,”
Adv. Funct. Mater.
,
19
, pp. 610–615.10.1002/adfm.200800984
124.
Wang
,
Y.
,
Liebig
,
C.
,
Xu
,
X.
, and
Venkatasubramanian
,
R.
,
2010
, “
Acoustic Phonon Scattering in Bi2Te3/Sb2Te3 Superlattices
,”
Appl. Phys. Lett.
,
97
, p.
083103
.10.1063/1.3483767
125.
Kopf
,
R. F.
,
Schubert
,
E. F.
,
Harris
,
T. D.
, and
Becker
,
R. S.
,
1991
, “
Photoluminescence of GaAs Quantum Wells Grown by Molecular Beam Epitaxy With Growth Interruptions
,”
Appl. Phys. Lett.
,
58
, pp. 631–633.10.1063/1.104551
126.
Termentzidis
,
K.
,
Chantrenne
,
P.
,
Duquesne
,
J.-Y.
, and
Saci
,
A.
,
2010
, “
Thermal Conductivity of GaAs/AlAs Superlattices and the Puzzle of Interfaces
,”
J. Phys.: Condens. Matter
,
22
, p.
475001
.10.1088/0953-8984/22/47/475001
127.
Chiritescu
,
C.
,
Cahill
,
D. G.
,
Nguyen
,
N.
,
Johnson
,
D.
,
Bodapati
,
A.
,
Keblinski
,
P.
, and
Zschack
,
P.
,
2007
, “
Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals
,”
Science
,
315
, pp. 351–353.10.1126/science.1136494
128.
Goodson
,
K. E.
,
2007
, “
Ordering Up the Minimum Thermal Conductivity of Solids
,”
Science
,
315
, pp.
342
343
.10.1126/science.1138067
129.
Cheaito
,
R.
,
Duda
,
J. C.
,
Beechem
,
T. E.
,
Hattar
,
K.
,
Ihlefeld
,
J. F.
,
Medlin
,
D. L.
,
Rodriguez
,
M. A.
,
Campion
,
M. J.
,
Piekos
,
E. S.
, and
Hopkins
,
P. E.
,
2012
, “
Experimental Investigation of Size Effects on the Thermal Conductivity of Silicon-Germanium Alloy Thin Films
,”
Phys. Rev. Lett.
,
109
, p.
195901
.10.1103/PhysRevLett.109.195901
130.
Bracht
,
H.
,
Wehmeier
,
N.
,
Eon
,
S.
,
Plech
,
A.
,
Issenmann
,
D.
,
Hansen
,
J. L.
,
Larsen
,
A. N.
,
Ager
,
J. W.
, III
, and
Haller
,
E. E.
,
2012
, “
Reduced Thermal Conductivity of Isotopically Modulated Silicon Multilayer Structures
,”
Appl. Phys. Lett.
,
101
, p.
064103
.10.1063/1.4742922
131.
Venkatasubramanian
,
R.
,
Siivola
,
E.
,
Colpitts
,
T.
, and
O'Quinn
,
B.
,
2001
, “
Thin-Film Thermoelectric Devices With High Room-Temperature Figures of Merit
,”
Nature
,
413
, pp. 597–602.10.1038/35098012
132.
Harman
,
T. C.
,
Taylor
,
P. J.
,
Walsh
,
M. P.
, and
LaForge
,
B. E.
,
2002
, “
Quantum Dot Superlattice Thermoelectric Materials and Devices
,”
Science
,
297
, pp. 2229–2232.10.1126/science.1072886
133.
Kim
,
W.
,
Zide
,
J.
,
Gossard
,
A.
,
Klenov
,
D.
,
Stemmer
,
S.
,
Shakouri
,
A.
, and
Majumdar
,
A.
,
2006
, “
Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors
,”
Phys. Rev. Lett.
,
96
, p.
045901
.10.1103/PhysRevLett.96.045901
134.
Minnich
,
A. J.
,
Dresselhaus
,
M. S.
,
Ren
,
Z. F.
, and
Chen
,
G.
,
2009
, “
Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects
,”
Energy Environ. Sci.
,
2
, pp.
466
479
.10.1039/b822664b
135.
Chong
,
T. C.
,
Shi
,
L. P.
,
Zhao
,
R.
,
Tan
,
P. K.
,
Li
,
J. M.
,
Lee
,
H. K.
,
Miao
,
X. S.
,
Du
,
A. Y.
, and
Tung
,
C. H.
,
2006
, “
Phase Change Random Access Memory Cell With Superlattice-Like Structure
,”
Appl. Phys. Lett.
,
88
, p.
122114
.10.1063/1.2181191
136.
Simpson
,
R. E.
,
Fons
,
P.
,
Kolobov
,
A. V.
,
Fukaya
,
T.
,
Krbal
,
M.
,
Yagi
,
T.
, and
Tominaga
,
J.
,
2011
, “
Interfacial Phase-Change Memory
,”
Nat. Nanotechnol.
,
6
, pp. 501–505.10.1038/nnano.2011.96
137.
Lau
,
W. T.
,
Shen
,
J.-T.
, and
Fan
,
S.
,
2010
, “
Exponential Suppression of Thermal Conductance Using Coherent Transport and Heterostructures
,”
Phys. Rev. B
,
82
, p.
113105
.10.1103/PhysRevB.82.113105
138.
Robb
,
P. D.
,
Finnie
,
M.
, and
Craven
,
A. J.
,
2012
, “
Characterisation of InAs/GaAs Short Period Superlattices Using Column Ratio Mapping in Aberration-Corrected Scanning Transmission Electron Microscopy
,”
Micron
,
43
, pp. 1068–1072.10.1016/j.micron.2012.04.018
139.
Wan
,
C.
,
Wang
,
Y.
,
Norimatsu
,
W.
,
Kusunoki
,
M.
, and
Koumoto
,
K.
,
2012
, “
Nanoscale Stacking Faults Induced Low Thermal Conductivity in Thermoelectric Layered Metal Sulfides
,”
Appl. Phys. Lett.
,
100
, p.
101913
.10.1063/1.3691887
140.
Li
,
Z.
,
Tan
,
S.
,
Bozorg-Grayeli
,
E.
,
Kodama
,
T.
,
Asheghi
,
M.
,
Delgado
,
G.
,
Panzer
,
M.
,
Pokrovsky
,
A.
,
Wack
,
D.
, and
Goodson
,
K. E.
,
2012
, “
Phonon Dominated Heat Conduction Normal to Mo/Si Multilayers With Period Below 10 nm
,”
Nano Lett.
,
12
, pp.
3121
3126
.10.1021/nl300996r
141.
Bozorg-Grayeli
,
E.
,
Li
,
Z.
,
Asheghi
,
M.
,
Delgado
,
G.
,
Pokrovsky
,
A.
,
Panzer
,
M.
,
Wack
,
D.
, and
Goodson
,
K. E.
,
2012
, “
Thermal Conduction Properties of Mo/Si Multilayers for Extreme Ultraviolet Optics
,”
J. Appl. Phys.
,
112
, p.
083504
.10.1063/1.4759450
142.
Mahan
,
G. D.
,
2011
, “
Thermal Transport in AB Superlattices
,”
Phys. Rev. B
,
83
, p.
125313
.10.1103/PhysRevB.83.125313
143.
Li
,
D.
,
Wu
,
Y.
,
Fan
,
R.
,
Yang
,
P.
, and
Majumdar
,
A.
,
2003
, “
Thermal Conductivity of Si/SiGe Superlattice Nanowires
,”
Appl. Phys. Lett.
,
83
, pp. 3186–3188.10.1063/1.1619221
144.
Shiomi
,
J.
, and
Maruyama
,
S.
,
2006
, “
Heat Conduction of Single-Walled Carbon Nanotube Isotope Superlattice Structures: A Molecular Dynamics Study
,”
Phys. Rev. B
,
74
, p.
155401
.10.1103/PhysRevB.74.155401
145.
Jiang
,
J.-W.
,
Wang
,
J.-S.
, and
Wang
,
B.-S.
,
2011
, “
Minimum Thermal Conductance in Graphene and Boron Nitride Superlattice
,”
Appl. Phys. Lett.
,
99
, p.
043109
.10.1063/1.3619832
146.
Liang
,
Z.
, and
Tsai
,
H.-L.
,
2011
, “
Effect of Thin Film Confined Between Two Dissimilar Solids on Interfacial Thermal Resistance
,”
J. Phys.: Condens. Matter
,
23
, p.
495303
.10.1088/0953-8984/23/49/495303
147.
Liang
,
Z.
, and
Tsai
,
H.-L.
,
2012
, “
Reduction of Solid-Solid Thermal Boundary Resistance by Inserting an Interlayer
,”
Int. J. Heat Mass Transfer
,
55
, pp. 2999–3007.10.1016/j.ijheatmasstransfer.2012.02.019
148.
Le
,
N. Q.
,
Duda
,
J. C.
,
English
,
T. S.
,
Hopkins
,
P. E.
,
Beechem
,
T. E.
, and
Norris
,
P. M.
,
2012
, “
Strategies for Tuning Phonon Transport in Multilayered Structures Using a Mismatch-Based Particle Model
,”
J. Appl. Phys.
,
111
, p.
084310
.10.1063/1.4704681
149.
Schelling
,
P. K.
, and
Phillpot
,
S. R.
,
2003
, “
Multiscale Simulation of Phonon Transport in Superlattices
,”
J. Appl. Phys.
,
93
, pp. 5377–5387.10.1063/1.1561601
150.
Li
,
X.
, and
Yang
,
R.
,
2012
, “
Size-Dependent Phonon Transmission Across Dissimilar Material Interfaces
,”
J. Phys.: Condens. Matter
,
24
, p.
155302
.10.1088/0953-8984/24/15/155302
151.
Landry
,
E. S.
, and
McGaughey
,
A. J. H.
,
2010
, “
Effect of Film Thickness on the Thermal Resistance of Confined Semiconductor Thin Films
,”
J. Appl. Phys.
,
107
, p.
013521
.10.1063/1.3275506
152.
Tian
,
Z. T.
,
White
,
B. E.
, Jr.
, and
Sun
,
Y.
,
2010
, “
Phonon Wave-Packet Interference and Phonon Tunneling Based Energy Transport Across Nanostructured Thin Films
,”
Appl. Phys. Lett.
,
96
, p.
263113
.10.1063/1.3458831
153.
Huang
,
M.-J.
, and
Chang
,
T.-M.
,
2012
, “
Thermal Transport Within Quantum-Dot Nanostructured Semiconductors
,”
Int. J. Heat Mass Transfer
,
55
, pp. 2800–2806.10.1016/j.ijheatmasstransfer.2012.02.001
You do not currently have access to this content.