In this work, we attempt to establish a general analytical approximation of the convection heat transfer from an isothermal wedge surface to fluids for all Prandtl numbers. The flow has been assumed to be laminar and steady state. The governing equations have been written in dimensionless form using a similarity method. A simple ad hoc technique is used to solve analytically the governing equations by proposing a general formula of the velocity profile. This formula verifies the boundary conditions and the equilibrium of the governing equations in the whole spatial region and permits us to obtain analytically the temperature profiles for all Prandtl numbers and for various configurations of the wedge surface. A comparison with the numerical results is given for all spatial regions and in wide Prandtl number values. A new Nusselt number expression is obtained for various configurations of the wedge surface and compared with the numerical results in wide Prandtl number values.

References

1.
Falkner
,
V. M.
, and
Skan
,
S. W.
, 1931, “
Some Approximations Solutions of the Boundary Layer Equations
,”
Philos. Mag.
,
12
, pp.
865
896
.
2.
Pohlhausen
,
E.
, 1921, “
Der Warme Austausch Zwischen Festen Korpern und Flussigkeiten Mit Kleine Reibung und Kleiner Warmeleitung
,”
Z. Angew. Math. Mech.
,
1
, p.
115
.
3.
Eckert
,
E. R. G.
, 1942, “
Die Berechnung des Warmeuberganges in der Laminaren Grenzschicht um Stromter Korper
,”
VDI-Forschungsh.
,
416
, p.
1
24
.
4.
Hartree
,
D. R.
, 1937, “
On an Equation Occurring in Falkner and Skan’s Approximate Treatment of the Equations of the Boundary Layer
,”
Proc. Cambridge Philos. Soc.
,
33
, pp.
223
239
.
5.
Lighthill
,
M. J.
, 1950, “
Contributions to the Theory of Heat Transfer Through a Laminar Boundary Layer
,”
Proc. R. Soc. London, Ser. A
,
A202
, pp.
359
377
.
6.
Spalding
,
D. B.
, 1958, “
Heat Transfer from Surfaces of Non-uniform Temperature
,”
J. Fluid Mech.
,
4
, pp.
22
32
.
7.
Evans
,
H. L.
, 1961, “
Mass Transfer Through Laminar Boundary Layers—3a. Similarity Solutions to the B-Equation
,”
Int. J. Heat Mass Transfer
,
3
, pp.
26
41
.
8.
Evans
,
H. L.
, 1962, “
Mass Transfer Through Laminar Boundary Layers—7. Further Similar Solutions to the B-Equation for Case B=0
,”
Int. J. Heat Mass Transfer
,
5
, pp.
35
57
.
9.
Schlichting
,
H.
, 1968,
Boundary-Layer Theory
,
McGraw-Hill
,
New York
.
10.
White
,
F.
, 1991,
Viscous Fluid
,
McGraw-Hill
,
New York
.
11.
Chao
,
B. T.
, 1972, “
An Improved Lighthill’s Analysis of Heat Transfer Through Boundary Layers
,”
Int. J. Heat Mass Transfer
,
15
, pp.
907
920
.
12.
Lin
,
H. T.
, and
Lin
,
L. K.
, 1987, “
Similarity Solutions for Laminar Forced Convection Heat Transfer From Wedge to Fluids of Any Prandtl Number
,”
Int. J. Heat Mass Transfer
,
30
, pp.
1111
1118
.
13.
Liao
,
S. J.
, 1992, “
The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems
,” Ph.D. thesis, Jiao Tong University, Shanghai.
14.
Liao
,
S. J.
, 1999, “
A Uniformly Valid Analytic Solution of 2D Viscous Flow Past a Semi-Infinite Flat Plate
,”
J. Fluid Mech.
,
385
, pp.
101
112
.
15.
Liao
,
S. J.
, and
Campo
,
A.
, 2002, “
Analytic Solutions of the Temperature Distribution in Blasius Viscous Flow Problems
,”
J. Fluid Mech.
,
453
, pp.
411
425
.
16.
Nanbu
,
K.
, 1971, “
Unsteady Falkner-Skan Flow
,”
J. Appl. Math. Phys. (ZAMP)
,
22
, pp.
1167
1172
.
17.
Awad
,
M. M.
, 2010, “
Heat Transfer From a Wedge to Fluids at Any Prandtl Number Using the Asymptotic Model
,”
ASME Conf. Proc. IHTC14
, Vol.
2
.
You do not currently have access to this content.