The kinetic theory of gas is used to predict the specific heat and thermal conductivity of ZnO nanostructures. In this model, phonons are considered as a gas whose basic properties are given by phonon dispersion curves. The model also requires knowledge of the boundary relaxation time parameter (F), the defect relaxation time parameter D, and the relaxation time parameters which take into account lattice anisotropy. These parameters can be determined independently from experimental measurements. Excellent agreements were found when comparing both the estimated specific heat and thermal conductivity to bulk sample measurement data. Comparison with previous results obtained with molecular dynamics (MD) simulations leads to the conclusion that for ultra narrow nanobelts, thermal conductivity depends on their length. Behavior of the thermal conductivity of nanofilms is also studied. The results are consistent with previous works on 1D and 2 D systems. Finally, the thermal conductivity of nanobelts is presented as are the influences of boundary and defect parameters.

References

1.
Zheng
,
W. P.
,
Dai
,
Z. R.
, and
Wang
,
Z. L.
, 2001, “
Nanobelts of Semiconducting Oxides
,”
Science
,
291
, pp.
1947
1949
.
2.
Kong
,
X. Y.
,
Ding
,
Y.
,
Yang
,
R.
and
Wang
,
Z. L.
, 2004, “
Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts
,”
Science
,
303
, pp.
1348
1351
.
3.
Gao
,
P. X.
,
Ding
,
Y.
,
Mai
,
W.
,
Hughes
,
W. L.
,
Lao
,
C.
, and
Wang
,
Z. L.
, 2005, “
Conversion of Zinc Oxide Nanobelts Into Superlattice-Structured Nanohelices
,”
Science
,
309
, pp.
1700
1704
.
4.
Gao
,
P. X.
, and
Wang
,
Z. L.
, 2005, “
Nanoarchitectures of Semiconducting and Piezoelectric Zinc Oxide”
,
J. Appl. Phys.
,
97
, p.
044304
.
5.
Wang
,
Z. L.
, 2009, “
ZnO Nanowire and Nanobelt Platform for Nanotechnology
,”
Mat. Rev. Sci. Eng.
,
R64
, pp.
33
71
.
6.
Wang
,
Z. L.
, 2004, “
Zinc Oxide Nanostructures: Growth, Properties and Applications
,”
J. Phys.: Condens. Matter
,
16
, pp.
R829
R858
.
7.
Yu
,
C.
,
Hao
,
Q.
,
Saha
,
S.
,
Shi
,
L.
,
Kong
,
X.
, and
Wang
,
Z. L.
, 2005, “
Integration of Metal Oxide Nanobelts With Microsystems for Nerve Agent Detection
,”
Appl. Phys. Lett.
,
86
, p.
063101
.
8.
Comini
,
E.
,
Faglia
,
G.
,
Sberveglieri
,
G.
,
Pan
,
Z.
, and
Wang
,
Z. L.
, 2002, “
Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts
,”
Appl. Phys. Lett.
81
, pp.
1869
1871
.
9.
Hughes
,
W. L.
, and
Wang
,
Z. L.
, 2003, “
Nanobelts as Nanocantilevers
,”
Appl. Phys. Lett.
,
82
(
17
),
pp. 2886
2888
.
10.
Flik
,
M. I.
, and
Tien
,
C. L.
, 1990, “
Size Effect on the Thermal Conductivity of High-Tc; Thin-Film Superconductors
,”
ASME Trans. J. Heat Transfer
,
112
, pp.
872
881
.
11.
Tzou
,
D. Y.
, 1997,
Macro-to Microscale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
Washington, DC
.
12.
Majumdar
,
A.
, 1998, “
Microscale Energy Transport in Solids
,”
Microscale Energy Transport
,
C.-L.
Tien
,
A.
Majumdar
, and
F. M.
Gerner
, eds.,
Taylor and Francis
,
Washington, DC,
pp.
1
94
.
13.
J.
Callaway
, 1959, “
Model of Lattice Thermal Conductivity at Low Temperatures
,”
Phys. Rev.
,
113
, pp.
1046
1051
.
14.
Holland
,
M. G.
, 1963, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
(
6
), pp.
2461
2471
.
15.
Zou
,
J.
, and
Balandin
,
A.
, 2001, “
Phonon Heat Conduction in a Semiconductor Nanowire
,”
J. Appl. Phys.
,
89
(
5
), pp.
2932
2938
.
16.
Zhou
,
X. W.
,
Aubry
,
J. R. E.
,
Greenstein
,
A.
, and
Schelling
,
P. K.
, 2009, “
Towards More Accurate Molecular Dynamics Calculation of Thermal Conductivity: Case Study of GaN Bulk Crystals
,”
Phys. Rev. B
,
79
, p.
115201
.
17.
Chantrenne
,
P.
, and
Barrat
,
J. L.
, 2004, “
Finite Size Effects in Determination of Thermal Conductivities: Comparing Molecular Dynamics Results With Simple Models
,”
ASME Trans. J. Heat Transfer
,
126
, pp.
577
585
.
18.
Landry
,
E. S.
, and
McGaughey
,
A. J. H.
, 2009, “
Thermal Boundary Resistance Predictions from Molecular Dynamics Simulations and Theoretical Calculations
,”
Phys. Rev. B
,
80
, p.
165304
.
19.
Lacroix
,
D.
, and
Joulain
,
K.
, and
Lemonnier
,
D.
, 2005, “
Monte Carlo Transient Phonon Transport in Silicon and Germanium at Nanoscale
,”
Phys. Rev. B
,
72
, p.
064305
.
20.
Chen
,
Y.
,
Li
,
D.
,
Lukes
,
J. R.
, and
Majumdar
,
A.
, 2005, “
Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity
,”
ASME J. Heat Transfer
,
127
, pp.
1129
1137
.
21.
Xu
,
J.
, and
Fisher
,
T. S.
, 2006, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat. Mass. Transfer
,
49
, pp.
1658
1666
.
22.
Hu
,
X. J.
,
Padilla
,
A. A.
,
Jun Xu
,
J.
,
Fisher
,
T. S.
, and
Goodson
,
K. E.
, 2006,
“3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon
,”
ASME Trans. J. Heat Transfer
,
128
(
11
), pp.
1109
1113
.
23.
Chen
,
R.
,
Hochbaum
,
A. I.
,
Murphy
,
P.
,
Moore
,
J.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2008, “
Thermal Conductance of Thin Silicon Nanowires
,”
Phys. Rev. Lett.
,
101
, p.
105501
.
24.
Mingo
,
N.
, and
Broido
,
D. A.
, 2004, “
Lattice Thermal Conductivity Crossovers in Semiconductor Nanowires
,”
Phys. Rev. Lett.
,
93
, p.
246106
.
25.
Donadio
,
D.
, and
Galli
,
G.
, 2009, “
Atomistic Simulations of Heat Transport in Silicon Nanowires
,”
Phys. Rev. Lett.
,
102
, p.
195901
.
26.
Balandin
,
A.
, and
Wang
,
K. L.
, 1998, “
Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well
,”
Phys. Rev. B
,
58
(
3
), pp.
1544
1549
.
27.
Wang
,
S. C.
,
Liang
,
X. G.
,
Xu
,
X. H.
, and
Ohara
,
T.
, 2009, “
Thermal Conductivity of Silicon Nanowire by Nonequilibrium Molecular Dynamics Simulations
,”
J. Appl. Phys.
,
105
, p.
014316
.
28.
Huang
,
M. J.
,
Weng
,
C. C.
, and
Chang
,
T. M.
, 2010, “
An Investigation of the Phonon Properties of Silicon Nanowires
,”
Int. J. Therm. Sci.
,
49
, pp.
1095
1102
.
29.
Mingo
,
N.
, 2003, “
Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations
,”
Phys. Rev. B
,
68
, p.
113308
.
30.
Maruyama
,
S.
, 2003, “
A Molecular Dynamics Simulation of Heat Conduction of a Finite Length Single-Walled Carbon Nanotube
,”
Nanoscale Microscale Thermophys. Eng.
,
7
(
1
), pp.
41
50
.
31.
Osman
,
M. A.
, and
Srivastava
,
D.
, 2001, “
Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes
,”
Nanotechnology
,
12
(
1
), pp.
21
24
.
32.
Hone
,
J.
,
Whitney
,
M.
,
Piskoti
,
C.
, and
Zettl
,
A.
, 1999, “
Thermal Conductivity of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
59
, pp.
R2514
R2516
.
33.
Martin
,
P.
,
Aksamija
,
Z.
,
Pop
,
E.
, and
Ravaioli
,
U.
, 2009, “
Impact of Phonon-Surface Roughness Scattering on Thermal Conductivity of Thin Si Nanowires
,”
Phys. Rev. Lett.
,
102
, p.
125503
.
34.
Kulkarni
,
A. J.
,
Zhou
,
M.
, and
Ke
,
F. J.
, 2005, “
Orientation and Size Dependence of the Elastic Properties of Zinc Oxide Nanobelts
,”
Nanotechnology
,
16
, pp.
2749
2756
.
35.
Kulkarni
,
A. J.
, and
Zhou
,
M.
, 2006, “
Surface-Effects-Dominated Thermal and Mechanical Responses of Zinc Oxide Nanobelts
,”
Acta Mech. Solida Sinica
,
22
, pp.
217
224
.
36.
Shi
,
L.
,
Hao
,
Q.
,
Yu
,
C.
,
Mingo
,
N.
,
Kong
,
X.
, and
Wang
,
Z. L.
, 2004, “
Thermal Conductivities of Individual Tin Dioxide Nanobelts
,”
Appl. Phys. Lett.
,
84
(
14
), pp.
2638
2640
.
37.
Chantrenne
,
P.
,
Barrat
,
J. L.
,
Blase
,
X.
, and
Gale
,
J. D.
, 2005, “
An Analytical Model for the Thermal Conductivity of Silicon Nanostructures
,”
J. Appl. Phys.
,
97
, p.
104318
.
38.
Li
,
D.
,
Wu
,
Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2003, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Appl. Phys. Lett.
,
83
, pp.
2934
2936
.
39.
Slack
,
G. A.
, 1972, “
Thermal Conductivity of II-VI Compounds Phonon Scattering by Fe2+ Impurities
,”
Phys. Rev. B
,
6
(
10
),
pp. 3791
3800
.
40.
Wolf
,
M. W.
, and
Martin
,
J. J.
, 1973, “
Low Temperature Thermal Conductivity of Zinc Oxide
,”
Phys. Status Solidi A
,
17
(
1
),
pp. 215
220
.
41.
Kittel
,
C.
, 1996,
Introduction to Solid State Physics
,
Wiley
,
New York.
42.
Serrano
,
J.
,
Manjón
,
F. J.
,
Romero
,
A. H.
,
Ivanov
,
A.
,
Lauck
,
R.
, and
Cardona
M.
, 2007, “
The Phonon Dispersion of Wurtzite-ZnO Revisited
,”
Phys. Status Solidi B
,
244
(
5
), pp.
1478
1482
.
43.
Serrano
,
J.
,
Romero
,
A. H.
,
Manjon
,
F. J
,
Lauck
,
R.
,
Cardona
,
M.
, and
Rubio
,
A.
, 2004, “
Pressure Dependence of the Lattice Dynamics of ZnO: An ab initio Approach
,”
Phys. Rev. B
,
69
, p.
094306
.
44.
Serrano
,
J.
,
Kremer
,
R. K.
,
Cardona
,
M.
,
Siegle
,
G.
,
Romero
,
A. H.
, and
Lauck
,
R.
, 2006, “
Heat Capacity of ZnO: Isotope Effects
,”
Phys. Rev. B
,
73
, p.
094303
.
45.
Wu
,
H. Y.
,
Cheng
,
X. L.
,
Hua
,
C. H.
, and
Zhou
,
P.
, 2010, “
The Structure and Thermodynamic Properties of Zinc Oxide With Wurtzite and Rocksalt Structure Under High Pressures
,”
Physica B
,
405
, pp.
606
612
.
46.
Thacher
,
P. D.
, 1967, “
Effect of Boundaries and Isotopes on Thermal Conductivity of LiF
,”
Phys. Rev.
,
156
(
3
),
pp. 975
988
.
47.
Peierls
,
R.
, 1929, “
On the Kinetic Theory of Thermal Conduction in Crystals
,”
Ann. Phys.
,
395
(
8
), pp.
1055
1101
.
48.
Slack
,
G. A.
, and
Galginaitis
,
S.
, 1964, “
Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe
,”
Phys. Rev.
,
133
, pp.
A253
A268
.
49.
Holland
,
M. G.
, 1964, “
Phonon Scattering in Semiconductors from Thermal Conductivity Studies
,”
Phys. Rev.
,
134
(
2
A), pp.
A471
A480
.
50.
Onn
,
D. G.
,
Witek
,
A.
,
Qiu
,
Y. Z.
,
Anthony
,
T. R.
, and
Banholzer
,
W. F.
, 1992, “
Some Aspects of the Thermal Conductivity of Isotopically Enriched Diamond Single Crystals
,”
Phys. Rev. Lett.
,
68
(
18
), pp.
2806
2809
.
51.
Sanati
,
M.
, and
Estreicher
,
S. K.
, 2004, “
Specific Heat and Entropy of GaN
,”
J. Phys.: Condens. Matter
,
16
(
28
), pp.
L327
L331
.
52.
Danilchenko
,
B. A.
,
Paszkiewicz
,
T.
,
Wolski
,
S.
,
Jeżowski
,
A.
, and
Plackowski
,
T.
, 2006, “
Heat Capacity and Phonon Mean Free Path of Wurtzite GaN
,”
Appl. Phys. Lett.
,
89
, p.
061901
.
53.
Janettaz
,
E.
, 1892, “
Sur la Propagation de la Chaleur dans les Solides Cristallisés
,”
Comptes Rendus. Acad. Sci.
,
114
, p.
1352
.
54.
Yates
,
B.
,
Cooper
,
R. F.
and
Kreitman
,
M. M.
, 1971, “
Low-Temperature Thermal Expansion of Zinc Oxide: Vibrations in Zinc Oxide and Sphalerite Zinc Sulfide”
,
Phys. Rev. B
,
4
, pp.
1314
1323
.
55.
Iwanaga
,
H.
,
Kunishige
,
A.
, and
Takeuchi
,
S.
, 2000, “
Anisotropic Thermal Expansion in Wurtzite-type Crystals
,”
J. Mater. Sci.
,
35
, pp.
2451
2454
.
56.
Klemens
,
P. G.
, 1951, “
The thermal Conductivity of Dielectric Solids at Low Temperatures
,”
Proc. R. Soc. London, Ser. A
,
208
(
1092
), pp.
108
133
.
57.
Klemens
,
P. G.
, 1958,
Solid State Physics
,
Academic Press Inc.
,
New York.
58.
,
X.
,
Chu
,
J. H.
, and
Shen
,
W. Z.
, 2003, “
Modification of the Lattice Thermal Conducivity in Semiconductor Rectangular Nanowires
,”
J. Appl. Phys.
,
93
, pp.
1219
1230
.
59.
Rosenblum
,
I.
,
Adler
,
J.
, and
Brandon
,
S.
, 1998, “
Calculation of Thermal Properties of Diamond From Simulated Phonon Spectra
,”
Comput. Mater. Sci.
,
12
, pp.
9
25
.
60.
Casimir
,
H. B. G.
, 1938, “
Note on the Conduction of Heat in Crystals
,”
Physica
,
5
, pp.
495
500
.
61.
Wang
,
Z.
,
Zu
,
X.
,
Gao
,
F.
,
Weber
,
J.
, and
Crocombette
,
J. P.
, 2007, “
Atomic Simulation of the Size and Orientation Dependences of Thermal Conductivity in GaN Nanowires
,”
Appl. Phys. Lett.
,
90
, p.
161923
.
62.
Lepri
,
S.
,
Livi
,
R.
, and
Politi
,
A.
, 2003, “
Thermal Conduction in Classical Low-Dimensional Lattices
,”
Phys. Rep.
,
377
, pp.
1
80
.
63.
Maruyama
,
S.
, 2002, “
A Molecular Dynamics Simulation of Heat Conduction of Finite Length SWNTs
,”
Physica B
,
323
(
1–4
), pp.
193
195
.
64.
Moreland
,
J. F.
, 2004, “
The Disparate Thermal Conductivity of Carbon Nanoubes and Diamond Nanowires Sudied by Atomistic Simulation
,”
Nanoscale Microscale Thermophys. Eng.
,
8
(
1
), pp.
61
69
.
65.
Lukes
,
J. R.
, and
Zhong
,
H.
, 2007, “
Thermal Conductivity of Individual Single—Wall Carbon Nanotubes
,”
ASME Trans. J. Heat Transfer
,
129
(
6
), pp.
705
716
.
66.
Che
,
J.
,
Cagin
,
T.
, and
Goddard
,
W. A.
, 2000, “
Thermal Conductivity of Carbon Nanotubes, Nanotechnology
,”
Nanotechnology
,
11
, pp.
65
69
.
67.
Berbert
,
S.
,
Kwon
,
Y. K.
, and
Tomanek
,
D.
, 2000, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
(
25
), pp.
4613
4616
.
68.
Ponomareva
,
I.
,
Srivastava
,
D.
, and
Menon
,
M.
, 2007, “
Thermal Conductivity in Thin Silicon Nanowires: Phonon Confinement Effect
,”
Nano Lett.
,
7
, pp.
1155
1159
.
69.
Yang
,
X.
,
To
,
A. C.
, and
Tian
,
R.
, 2010, “
Anomalous Heat Conduction Behavior in Thin Finite-Size Silicon Nanowires
,”
Nanotechnology
,
21
, p.
155704
.
70.
Yang
,
N.
,
Zhang
,
G.
, and
Li
,
B.
, 2010, “
Violation of Fourier’s Law and Anomalous Heat Diffusion in Silicon Nanowires
,”
Nanotoday
,
5
(
2
), pp.
85
90
.
You do not currently have access to this content.