Accurate modeling of gas microvection is crucial for a lot of MEMS applications (microheat exchangers, pressure gauges, fluidic microactuators for active control of aerodynamic flows, mass flow and temperature microsensors, micropumps, and microsystems for mixing or separation for local gas analysis, mass spectrometers, vacuum, and dosing valves…). Gas flows in microsystems are often in the slip flow regime, characterized by a moderate rarefaction with a Knudsen number of the order of 10−2–10−1. In this regime, velocity slip and temperature jump at the walls play a major role in heat transfer. This paper presents a state of the art review on convective heat transfer in microchannels, focusing on rarefaction effects in the slip flow regime. Analytical and numerical models are compared for various microchannel geometries and heat transfer conditions (constant heat flux or constant wall temperature). The validity of simplifying assumptions is detailed and the role played by the kind of velocity slip and temperature jump boundary conditions is shown. The influence of specific effects, such as viscous dissipation, axial conduction and variable fluid properties is also discussed.

References

1.
Colin
,
S.
, 2005, “
Rarefaction and Compressibility Effects on Steady and Transient Gas Flows in Microchannels
,”
Microfluid. Nanofluid.
,
1
(
3
), pp.
268
279
.
2.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
, 2001, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
4
), pp.
293
311
.
3.
Rostami
,
A. A.
,
Mujumdar
,
A. S.
, and
Saniei
,
N.
, 2002, “
Flow and Heat Transfer for Gas Flowing in Microchannels: A Review
,”
Heat Mass Transfer
,
38
(
4–5
), pp.
359
367
.
4.
Morini
,
G. L.
, 2004, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.
5.
Pitakarnnop
,
J.
,
Varoutis
,
S.
,
Valougeorgis
,
D.
,
Geoffroy
,
S.
,
Baldas
,
L.
, and
Colin
,
S.
, 2010, “
A Novel Experimental Setup for Gas Microflows
,”
Microfluid. Nanofluid.
,
8
(
1
), pp.
57
72
.
6.
Lockerby
,
D. A.
,
Reese
,
J. M.
,
Emerson
,
D. R.
, and
Barber
,
R. W.
, 2004, “
Velocity Boundary Condition at Solid Walls in Rarefied Gas Calculations
,”
Phys. Rev. E
,
70
, pp.
017303/1
4
.
7.
Barber
,
R. W.
,
Sun
,
Y.
,
Gu
,
X.-J.
, and
Emerson
,
D. R.
, 2004, “
Isothermal Slip Flow Over Curved Surfaces
,”
Vacuum
,
76
, pp.
73
81
.
8.
Khadem
,
M. H.
,
Shams
,
M.
, and
Hossainpour
,
S.
, 2009, “
Numerical Simulation of Roughness Effects on Flow and Heat Transfer in Microchannels at Slip Flow Regime
,”
Int. Commun. Heat Mass Transfer
,
36
(
1
), pp.
69
77
.
9.
Hossainpour
,
S.
, and
Khadem
,
M. H.
, 2010, “
Investigation of Fluid Flow and Heat Transfer Characteristics of Gases in Microchannels With Consideration of Different Roughness Shapes at Slip Flow Regime
,”
Nanoscale Microscale Thermophys. Eng.
,
14
(
3
), pp.
137
151
.
10.
Shojaeian
,
M.
, and
Dibaji
,
S. A. R.
, 2010, “
Three-Dimensional Numerical Simulation of the Slip Flow Through Triangular Microchannels
,”
Int. Commun. Heat Mass Transfer
,
37
(
3
), pp.
324
329
.
11.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
, and
Bird
,
R. B.
, 1964,
Molecular Theory of Gases and Liquids
,
Wiley
,
New York
.
12.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
, 2006,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Oxford
.
13.
Cercignani
,
C.
, and
Lorenzani
,
S.
, 2010, “
Variational Derivation of Second-Order Slip Coefficients on the Basis of the Boltzmann Equation for Hard-Sphere Molecules
,”
Phys. Fluids
,
22
(
6
), pp.
062004
.
14.
Lorenzani
,
S.
, 2011, “
Higher Order Slip According to the Linearized Boltzmann Equation With General Boundary Conditions
,”
Philos. Trans. R. Soc. London Ser. A
,
369
(
1944
), pp.
2228
2236
.
15.
Sparrow
,
E. M.
, and
Lin
,
S. H.
, 1962, “
Laminar Heat Transfer in Tubes Under Slip-Flow Conditions
,”
Trans ASME J. Heat Transfer
,
84
, pp.
363
369
.
16.
Ameel
,
T. A.
,
Wang
,
X.
,
Barron
,
R. F.
, and
Warrington
,
R. O. J.
, 1997, “
Laminar Forced Convection in a Circular Tube With Constant Heat Flux and Slip Flow
,”
Microscale Thermophys. Eng.
,
1
(
4
), pp.
303
320
.
17.
Li
,
J.-M.
,
Wang
,
B.-X.
, and
Peng
,
X.-F.
, 2000, “
‘Wall-Adjacent Layer’ Analysis for Developed-Flow Laminar Heat Transfer of Gases in Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
5
), pp.
839
847
.
18.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
, 2001, “
Heat Transfer in Microtubes With Viscous Dissipation
,”
Int. J. Heat Mass Transfer
,
44
(
13
), pp.
2395
2403
.
19.
Aydın
,
O.
, and
Avcı
,
M.
, 2006, “
Heat and Fluid Flow Characteristics of Gases in Micropipes
,’
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1723
1730
.
20.
Jeong
,
H.
, and
Jeong
,
J.
, 2006, “
Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube
,”
J. Mech. Sci. Technol.
,
20
(
1
), pp.
158
166
.
21.
Hooman
,
K.
, 2007, “
Entropy Generation for Microscale Forced Convection: Effects of Different Thermal Boundary Conditions, Velocity Slip, Temperature Jump, Viscous Dissipation, and Duct Geometry
,”
Int. Commun. Heat Mass Transfer
,
34
(
8
), pp.
945
957
.
22.
Hooman
,
K.
, and
Ejlali
,
A.
, 2010, “
Effects of Viscous Heating, Fluid Property Variation, Velocity Slip, and Temperature Jump on Convection Through Parallel Plate and Circular Microchannels
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
34
38
.
23.
Hooman
,
K.
,
Hooman
,
F.
, and
Famouri
,
M.
, 2009, “
Scaling Effects for Flow in Micro-Channels: Variable Property, Viscous Heating, Velocity Slip, and Temperature Jump
,”
Int. Commun. in Heat Mass Transfer
,
36
(
2
), pp.
192
196
.
24.
Barron
,
R. F.
,
Wang
,
X. M.
,
Warrington
,
R. O.
, and
Ameel
,
T.
, 1996, “
Evaluation of the Eigenvalues for the Graetz Problem in Slip-Flow
,”
Int. Commun. Heat Mass Transfer
,
23
(
4
), pp.
563
574
.
25.
Barron
,
R. F.
,
Wang
,
X. M.
,
Ameel
,
T. A.
, and
Warrington
,
R. O.
, 1997, “
The Graetz Problem Extended to Slip-Flow
,”
Int. J. Heat Mass Transfer
,
40
(
8
), pp.
1817
1823
.
26.
Mikhailov
,
M. D.
, and
Cotta
,
R. M.
, 1997, “
Eigenvalues for the Graetz Problem in Slip Flow
,”
Int. Commun. Heat Mass Transfer
,
24
(
3
), pp.
449
451
.
27.
Larrodé
,
F. E.
,
Housiadas
,
C.
, and
Drossinos
,
Y.
, 2000, “
Slip-Flow Heat Transfer in Circular Tubes
,”
Int. J. Heat Mass Transfer
,
43
(
15
), pp.
2669
2680
.
28.
Myong
,
R. S.
,
Lockerby
,
D. A.
, and
Reese
,
J. M.
, 2006, “
The Effect of Gaseous Slip on Microscale Heat Transfer: An Extended Graetz Problem
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2502
2513
.
29.
Çetin
,
B.
,
Yazicioglu
,
A. G.
, and
Kakaç
,
S.
, 2009, “
Slip-Flow Heat Transfer in Microtubes With Axial Conduction and Viscous Dissipation—An Extended Graetz Problem
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1673
1678
.
30.
Çetin
,
B.
,
Yazicioglu
,
A. G.
, and
Kakaç
,
S.
, 2008, “
Fluid flow in Microtubes With Axial Conduction Including Rarefaction and Viscous Dissipation
,”
Int. Commun. Heat Mass Transfer
,
35
(
5
), pp.
535
544
.
31.
Satapathy
,
A. K.
, 2010, “
Slip Flow Heat Transfer in an Infinite Microtube With Axial Conduction
,”
Int. J. Therm. Sci.
,
49
(
1
), pp.
153
160
.
32.
Çetin
,
B.
, and
Bayer
,
O.
, 2011, “
Evaluation of Nusselt Number for a Flow in a Microtube Using Second-Order Slip Model
,”
Therm. Sci.
,
15
(SI Suppl. 1), pp.
S103
S109
.
33.
Xiao
,
N.
,
Elsnab
,
J.
, and
Ameel
,
T.
, 2009, “
Microtube Gas Flows With Second-Order Slip Flow and Temperature Jump Boundary Conditions
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
243
251
.
34.
Aziz
,
A.
, and
Niedbalski
,
N.
, 2011, “
Thermally Developing Microtube Gas Flow With Axial Conduction and Viscous Dissipation
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
332
340
.
35.
Demsis
,
A.
,
Verma
,
B.
,
Prabhu
,
S. V.
, and
Agrawal
,
A.
, 2009, “
Experimental Determination of Heat Transfer Coefficient in the Slip Regime and Its Anomalously Low Value
,”
Phys. Rev. E
,
80
(
1
), pp.
016311
.
36.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
, 1991,
Fluid Flow and Heat Transfer in Microtubes
,
ASME
,
New York
, DSC-32, pp.
123
133
.
37.
Morini
,
G. L.
,
Yang
,
Y.
,
Chalabi
,
H.
, and
Lorenzini
,
M.
, 2011, “
A Critical Review of the Measurement Techniques for the Analysis of Gas Microflows Through Microchannels
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
849
865
.
38.
Inman
,
R.
, 1964, “
Laminar Slip Flow Heat Transfer in a Parallel Plate Channel or a Round Tube With Uniform Wall Heating
,” in NASA Technical Note D-2393.
39.
Zhu
,
X.
,
Xin
,
M. D.
, and
Liao
,
Q.
, 2002, “
Analysis of Heat Transfer Between Two Unsymmetrically Heated Parallel Plates With Microspacing in the Slip Flow Regime
,”
Microscale Thermophys. Eng.
,
6
(
4
), pp.
287
301
.
40.
Jeong
,
H.-E.
, and
Jeong
,
J.-T.
, 2006, “
Extended Graetz Problem Including Streamwise Conduction and Viscous Dissipation in Microchannel
,”
Int. J. Heat Mass Transfer
,
49
(
13–14
), pp.
2151
2157
.
41.
Aydın
,
O.
, and
Avcı
,
M.
, 2007, “
Analysis of Laminar Heat Transfer in Micro-Poiseuille Flow
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
30
37
.
42.
van Rij
,
J.
,
Ameel
,
T.
, and
Harman
,
T.
, 2009, “
The Effect of Viscous Dissipation and Rarefaction on Rectangular Microchannel Convective Heat Transfer
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
271
281
.
43.
Hadjiconstantinou
,
N. G.
, and
Simek
,
O.
, 2002, “
Constant-Wall-Temperature Nusselt Number in Micro and Nano-Channels
,”
Trans. ASME J. Heat Transfer
,
124
, pp.
356
364
.
44.
Kavehpour
,
H. P.
,
Faghri
,
M.
, and
Asako
,
Y.
, 1997, “
Effects of Compressibility and Rarefaction on Gaseous Flows in Microchannels
,”
Numer. Heat Transfer, Part A
,
32(7)
, pp.
677
696
.
45.
Yu
,
S.
and
Ameel
,
T. A.
, 2000, “
Slip-Flow Peclet Number Thermal Entry Problem Within a Flat Microchannel Subject to Constant Wall Temperature
,”
Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale
,
G.P.
Celata
, ed.,
Banff, Canada
. pp.
101
107
.
46.
Mikhailov
,
M. D.
, and
Cotta
,
R. M.
, 2005, “
Mixed Symbolic-Numerical Computation of Convective Heat Transfer With Slip Flow in Microchannels
,”
Int. Commun. Heat Mass Transfer
,
32
(
3–4
), pp.
341
348
.
47.
Sun
,
Z.
, and
Jaluria
,
Y.
, 2010, “
Unsteady Two-Dimensional Nitrogen Flow in Long Microchannels With Uniform Wall Heat Flux
,”
Numer. Heat Transfer, Part A
,
57
(
9
), pp.
625
641
.
48.
Ji
,
Y.
,
Yuan
,
K.
, and
Chung
,
J. N.
, 2006, “
Numerical Simulation of Wall Roughness on Gaseous Flow and Heat Transfer in a Microchannel
,”
Int. J. Heat Mass Transfer
,
49
(
7–8
), pp.
1329
1339
.
49.
Croce
,
G.
, and
D’Agaro
,
P.
, 2009, “
Compressibility and Rarefaction Effect on Heat Transfer in Rough Microchannels
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
252
260
.
50.
Sadeghi
,
A.
, and
Saidi
,
M. H.
, 2010, “
Viscous Dissipation and Rarefaction Effects on Laminar Forced Convection in Microchannels
,”
Trans. ASME J. Heat Transfer
,
132
(
7
), pp.
072401
.
51.
Miyamoto
,
M.
,
Shi
,
W.
,
Katoh
,
Y.
, and
Kurima
,
J.
, 2003, “
Choked Flow and Heat Transfer of Low Density Gas in a Narrow Parallel-Plate Channel With Uniformly Heating Walls
,
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2685
2693
.
52.
Hong
,
C.
, and
Asako
,
Y.
, 2008, “
Heat Transfer Characteristics of Gaseous Flows in Micro-Channel With Negative Heat Flux
,”
Heat Transfer Eng.
,
29
(
9
), pp.
805
815
.
53.
Chen
,
C.-H.
, 2006, “
Slip-Flow Heat Transfer in a Microchannel With Viscous Dissipation
,”
Heat Mass Transfer
,
42
(
9
), pp.
853
860
.
54.
Maslen
,
S. H.
, 1958, “
On Heat Transfer in Slip Flow
,”
J. Aeronaut. Sci.
,
25
, pp.
400
401
.
55.
Lockerby
,
D. A.
, and
Reese
,
J. M.
, 2008, “
On the Modelling of Isothermal Gas Flows at the Microscale
,”
J. Fluid Mech.
,
604
, pp.
235
261
.
56.
Hadjiconstantinou
,
N. G.
, 2003, “
Dissipation in Small Scale Gaseous Flows
,”
Trans. ASME J. Heat Transfer
,
125
, pp.
944
947
.
57.
Hong
,
C.
, and
Asako
,
Y.
, 2010, “
Some Considerations on Thermal Boundary Condition of Slip Flow
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3075
3079
.
58.
Shi
,
W.
,
Miyamoto
,
M.
,
Katoh
,
Y.
, and
Kurima
,
J.
, 2001, “
Choked Flow of Low Density Gas in a Narrow Parallel-Plate Channel With Adiabatic Walls
,”
Int. J. Heat Mass Transfer
,
44
(
13
), pp.
2555
2565
.
59.
Aubert
,
C.
, and
Colin
,
S.
, 2001, “
High-Order Boundary Conditions for Gaseous Flows in Rectangular Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
1
), pp.
41
54
.
60.
Ebert
,
W.A.
, and
Sparrow
,
E. M.
, 1965, “
Slip Flow in Rectangular and Annular Ducts
,”
J. Basic Eng.
,
87
, pp.
1018
1024
.
61.
Colin
,
S.
,
Lalonde
,
P.
, and
Caen
,
R.
, 2004, “
Validation of a Second-Order Slip Flow Model in Rectangular Microchannels
,”
Heat Transfer Eng.
,
25
(
3
), pp.
23
30
.
62.
Szalmás
,
L.
,
Pitakarnnop
,
J.
,
Geoffroy
,
S.
,
Colin
,
S.
, and
Valougeorgis
,
D.
, 2010, “
Comparative Study Between Computational and Experimental Results for Binary Rarefied Gas Flows Through Long Microchannels
,”
Microfluid. Nanofluid.
,
9
(
6
), pp.
1103
1114
.
63.
Spiga
,
M.
, and
Morini
,
G. L.
, 1996, “
Nusselt Numbers in Laminar Flow for H2 Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
39
(
6
), pp.
1165
1174
.
64.
Morini
,
G. L.
, 2000, “
Analytical Determination of the Temperature Distribution and Nusselt Numbers in Rectangular Ducts With Constant Axial Heat Flux
,”
Int. J. Heat Mass Transfer
,
43
(
5
), pp.
741
755
.
65.
van Rij
,
J.
,
Ameel
,
T.
, and
Harman
,
T.
, 2009, “
An Evaluation of Secondary Effects on Microchannel Frictional and Convective Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2792
2801
.
66.
Deissler
,
R. G.
, 1964, “
An Analysis of Second-Order Slip Flow and Temperature-Jump Boundary Conditions for Rarefied Gases
,”
Int. J. Heat Mass Transfer
,
7
, pp.
681
694
.
67.
Sharipov
,
F.
, 2011, “
Data on the Velocity Slip and Temperature Jump on a Gas-Solid Interface
,”
J. Phys. Chem. Ref. Data
,
40
(
2
), pp.
023101
.
68.
Yu
,
S.
, and
Ameel
,
T. A.
, 2001, “
Slip-Flow Heat Transfer in Rectangular Microchannels
,”
Int. J. of Heat Mass Transfer
,
44
(
22
), pp.
4225
4234
.
69.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
, 2002, “
Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
765
773
.
70.
Yu
,
S.
, and
Ameel
,
T. A.
, 2002, “
Slip Flow Convection in Isoflux Rectangular Microchannels
,”
Trans ASME J. Heat Transfer
,
124
, pp.
346
355
.
71.
Ghodoossi
,
L.
, and
Eğrican
,
N.
, 2005, “
Prediction of Heat Transfer Characteristics in Rectangular Microchannels for Slip Flow Regime and H1 Boundary Condition
,”
Int. J. Therm. Sci.
,
44
(
6
), pp.
513
520
.
72.
Renksizbulut
,
M.
,
Niazmand
,
H.
, and
Tercan
,
G.
, 2006, “
Slip-Flow and Heat Transfer in Rectangular Microchannels With Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
45
(
9
), pp.
870
881
.
73.
Aynur
,
T.
,
Kuddusi
,
L.
, and
Eğrican
,
N.
, 2006, “
Viscous Dissipation Effect on Heat Transfer Characteristics of Rectangular Microchannels Under Slip Flow Regime and H1 Boundary Conditions
,”
Heat Mass Transfer
,
42
(
12
), pp.
1093
1101
.
74.
Kuddusi
,
L.
, and
Cetegen
,
E.
, 2007, “
Prediction of Temperature Distribution and Nusselt Number in Rectangular Microchannels at Wall Slip Condition for All Versions of Constant Heat Flux
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
777
786
.
75.
Hettiarachchi
,
H. D. M.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Minkowycz
,
W. J.
, 2008, “
Slip-Flow and Conjugate Heat Transfer in Rectangular Microchannels
,”
HT2008, Proceedings of the ASME Summer Heat Transfer Conference
, pp.
547
555
.
76.
Hettiarachchi
,
H. D. M.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Minkowycz
,
W. J.
, 2008, “
Three-Dimensional Laminar Slip-Flow and Heat Transfer in a Rectangular Microchannel With Constant Wall Temperature
,”.
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5088
5096
.
77.
Hooman
,
K.
, 2008, “
Heat Transfer and Entropy Generation for Forced Convection Through a Microduct of Rectangular Cross-Section: Effects of Velocity Slip, Temperature Jump, and Duct Geometry
,”
Int. Commun. Heat Mass Transfer
,
35
(
9
), pp.
1065
1068
.
78.
Qazi Zade
,
A.
,
Renksizbulut
,
M.
, and
Friedman
,
J.
, 2011, “
Heat Transfer Characteristics of Developing Gaseous Slip-Flow in Rectangular Microchannels With Variable Physical Properties
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
117
127
.
79.
Qazi Zade
,
A.
,
Renksizbulut
,
M.
, and
Friedman
,
J.
, 2010, “
Variable Property Effects in Simultaneously Developing Gaseous Slip-Flow in Rectangular Microchannels With Prescribed Wall Heat Flux
,”
Proceedings of the 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels and Minichannels (FEDSM-ICNMM2010)
,
ASME
,
Montréal, Canada
. pp.
FEDSM
-ICNMM2010-30587:1-
8
.
80.
Niazmand
,
H.
,
Renksizbulut
,
M.
, and
Saeedi
,
E.
, 2008, “
Developing Slip-Flow and Heat Transfer in Trapezoidal Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6126
6135
.
81.
Kuddusi
,
L.
, and
Çetegen
,
E.
, 2009, “
Thermal and Hydrodynamic Analysis of Gaseous Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
353
362
.
82.
Kuddusi
,
L.
, 2011, “
First and Second Law Analysis of Fully Developed Gaseous Slip Flow in Trapezoidal Silicon Microchannels Considering Viscous Dissipation Effect
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
52
64
.
83.
Zhu
,
X.
,
Liao
,
Q.
, and
Xin
,
M.
, 2004, “
Analysis of the Heat Transfer in Unsymmetrically Heated Triangular Microchannels in Slip Flow Regime
,”
Sci. Chin. Ser. E: Technol. Sci.
,
47
(
4
), pp.
436
446
.
84.
Avci
,
M.
, and
Aydin
,
O.
, 2008, “
Laminar Forced Convection Slip-Flow in a Micro-Annulus Between Two Concentric Cylinders
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3460
3467
.
85.
Char
,
M.-I.
, and
Tai
,
B.-C.
, 2010, “
Effects of Viscous Dissipation on Slip-Flow Heat Transfer in a Micro Annulus
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1402
1408
.
86.
Duan
,
Z.
, and
Muzychka
,
Y. S.
, 2008, “
Slip Flow Heat Transfer in Annular Microchannels With Constant Heat Flux
,”
Trans. ASME J. Heat Transfer
,
130
(
9
), pp.
092401
.
87.
Languri
,
E. M.
, and
Hooman
,
K.
, 2011, “
Slip Flow Forced Convection in a Microchannel With Semi-Circular Cross-Section
,”
Int. Commun. Heat Mass Transfer
,
38
(
2
), pp.
139
143
.
88.
Shams
,
M.
,
Shojaeian
,
M.
,
Aghanajafi
,
C.
, and
S. A. R.
Dibaji
, 2009, “
Numerical Simulation of Slip Flow Through Rhombus Microchannels
,”
Int. Commun. Heat Mass Transfer
,
36
(
10
), pp.
1075
1081
.
89.
Zhu
,
X.
, and
Liao
,
Q.
, 2006, “
Heat Transfer for Laminar Slip Flow in a Microchannel of Arbitrary Cross Section With Complex Thermal Boundary Conditions
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
1246
1256
.
90.
Hooman
,
K.
, 2008, “
A Superposition Approach to Study Slip-Flow Forced Convection in Straight Microchannels of Uniform But Arbitrary Cross-Section
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3753
3762
.
91.
Shokouhmand
,
H.
, and
Bigham
,
S.
, 2010, “
Slip-Flow and Heat Transfer of Gaseous Flows in the Entrance of a Wavy Microchannel
,”
Int. Commun. Heat Mass Transfer
,
37
(
6
), pp.
695
702
.
92.
Shokouhmand
,
H.
,
Bigham
,
S.
, and
Nasr Isfahani
,
R.
, 2011, “
Effects of Knudsen Number and Geometry on Gaseous Flow and Heat Transfer in a Constricted Microchannel
,”
Heat Mass Transfer
,
47(2)
, pp.
119
130
.
93.
Gulhane
,
N. P.
, and
Mahulikar
,
S. P.
, 2009, “
Variations in Gas Properties in Laminar Micro-Convection With Entrance Effect
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1980
1990
.
94.
Ewart
,
T.
,
Perrier
,
P.
,
Graur
,
I.
, and
Méolans
,
J. G.
, 2006, “
Mass Flow Rate Measurements in Gas Micro Flows
,”
Exp. Fluids
,
41
(
3
), pp.
487
498
.
You do not currently have access to this content.