In this study, a new method based on the local composition theory has been developed to predict thermal conductivity, convective heat transfer coefficient, and viscosity of nanofluids. The nonrandom two liquid (NRTL) model is used for this purpose. The effects of temperature and particle volume concentration on thermal conductivity, convective heat transfer coefficient, and viscosity are investigated. The adjustable parameters of the NRTL model were obtained by fitting with experimental data. The results of the local composition theory are compared with the experimental data of CuO/water, Al2O3/water, TiO2/water, Cu/water, Au/water, Ni/water, TiO2/ethylene glycol, and Al/ethylene glycol (EG) nanofluids and a good agreement between the theory and the experimental data is observed. The absolute average deviation of the model for thermal conductivity was 1.51% in comparison to 42% in conventional models. This parameter for viscosity and convective heat transfer coefficient were 2.91% and 2.13%, respectively. Moreover, a new equation for calculating convective heat transfer coefficient of nanofluids is proposed and tested.

1.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
, 2007, “
A Critical Review of Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
1364-0321,
11
, pp.
797
817
.
2.
Chein
,
R.
, and
Huang
,
G.
, 2005, “
Analysis of Microchannel Heat Sink Performance Using Nanofluids
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
3104
3114
.
3.
Maïga
,
S. E. B.
,
Palm
,
S. J.
,
Nguyen
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
, 2005, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
530
546
.
4.
Wang
,
L.
, and
Wei
,
X.
, 2009, “
Nanofluids: Synthesis, Heat Conduction, and Extension
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
033102
.
5.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L. W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Paola
,
R. D.
,
Ding
,
K.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J. H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Vaerenbergh
,
S. V.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W. H.
,
Zhao
,
X. Z.
, and
Zhou
,
S. Q.
, 2009, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
0021-8979,
106
(
094312
), pp.
1
14
.
6.
Gelb
,
L. D.
,
Gubbins
,
K. E.
,
Radhakrishnan
,
R.
, and
Sliwinska-Bartkowiak
,
M.
, 1999, “
Phase Separation in Confined Systems
,”
Rep. Prog. Phys.
0034-4885,
62
, pp.
1573
1659
.
7.
Alba-Simionesco
,
C.
,
Coasne
,
B.
,
Dosseh
,
G.
,
Dudziak
,
G.
,
Gubbins
,
K. E.
,
Radhakrishnan
,
R.
, and
Sliwinska-Bartkowiak
,
M.
, 2006, “
Effects of Confinement on Freezing and Melting
,”
J. Phys.: Condens. Matter
0953-8984,
18
, pp.
R15
R68
.
8.
Van
,
M.
, and
Snook
,
I.
, 1979, “
Solvent Structure and Solvation Forces Between Solid Bodies
,”
J. Chem. Soc., Faraday Trans.
0956-5000,
2
(
75
), pp.
1095
1102
.
9.
Snook
,
I. K.
, and
Van Megen
,
W.
, 1979, “
The Solvation Forces Between Colloidal Particles
,”
Phys. Lett. A
0375-9601,
74
, pp.
332
334
.
10.
Horn
,
R. G.
, and
Israelachvili
,
J. N.
, 1980, “
Direct Measurement of Forces Due to Solvent Structure
,”
Chem. Phys. Lett.
0009-2614,
71
, pp.
192
194
.
11.
Horn
,
R. G.
, and
Israelachvili
,
J. N.
, 1981, “
Direct Measurement of Structural Forces Between Two Surfaces in a Nonpolar Liquid
,”
J. Chem. Phys.
0021-9606,
75
, pp.
1400
1411
.
12.
Li
,
J.
, and
Kleinstreuer
,
C.
, 2008, “
Thermal Performance of Nanofluids Flow in Microchannels
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
1221
1232
.
13.
Xuan
,
Y.
, and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
58
64
.
14.
Lai
,
W. Y.
,
Vinod
,
S.
,
Phelan
,
P. E.
, and
Prasher
,
R.
, 2009, “
Convective Heat Transfer for Water-Based Alumina Nanofluids in a Single 1.02-mm Tube
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
112401
.
15.
Jung
,
J. Y.
,
Oh
,
H. S.
, and
Kwak
,
H. Y.
, 2009, “
Forced Convective Heat Transfer of Nanofluids in Microchanels
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
466
472
.
16.
Beck
,
M. P.
,
Sun
,
T.
, and
Teja
,
A. S.
, 2007, “
The Thermal Conductivity of Alumina Nanoparticles Dispersed in Ethylene Glycol
,”
Fluid Phase Equilib.
0378-3812,
260
, pp.
275
278
.
17.
Xie
,
H.
,
Fujii
,
M.
, and
Zhang
,
X.
, 2005, “
Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticles-Fluid Mixture
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2926
2932
.
18.
Xuan
,
Y.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
151
1555
(ASME).
19.
He
,
Y.
,
Jin
,
Y.
,
Chen
,
H.
,
Ding
,
Y.
,
Cang
,
D.
, and
Lu
,
H.
, 2007, “
Heat Transfer and Flow Behavior of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2272
2281
.
20.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
(ASME).
21.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2008, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
560
568
.
22.
Xue
,
Q. Z.
, 2003, “
Model for Effective Thermal Conductivity of Nanofluids
,”
Phys. Lett.
0375-9601,
307
, pp.
313
317
.
23.
Shukla
,
R. K.
, and
Dhir
,
V. K.
, 2008, “
Effect of Brownian Motion on Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
042406
.
24.
Prausnitz
,
J. M.
,
Lichtenthaler
,
R. N.
, and
Azevedo
,
E. G.
, 1999,
Thermodynamics of Fluid-Phase Equilibria
, 3rd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
25.
Powell
,
R. E.
,
Roseveare
,
W. E.
, and
Eyring
,
H.
, 1941, “
Diffusion, Thermal Conductivity, and Viscous Flow of Fluids
,”
Ind. Eng. Chem.
0019-7866,
33
, pp.
430
435
.
26.
Xue
,
Q.
, and
Xu
,
W. M.
, 2005, “
A Model of Thermal Conductivity of Nanofluids With Interfacial Shells
,”
Mater. Chem. Phys.
0254-0584,
90
(
2–3
), pp.
298
301
.
27.
Rea
,
U.
,
McKrell
,
T.
,
Hu
,
L. W.
, and
Buongiorno
,
J.
, 2009, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-Water and Zirconia-Water Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
2042
2048
.
28.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Maré
,
T.
,
Boucher
,
S.
, and
Mintsa
,
H. A.
, 2007, “
Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids-Hysteresis Phenomenon
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
1492
1506
.
29.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Galanis
,
N.
,
Roy
,
G.
,
Maré
,
T.
,
Boucher
,
S.
, and
Mintsa
,
H. A.
, 2008, “
Viscosity Data for Al2O3-Water Nanofluids-Hysteresis: Is Heat Transfer Enhancement Using Nanofluids Reliable?
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
103
11
.
30.
Namburu
,
P. K.
,
Das
,
D. K.
,
Tanguturi
,
K. M.
, and
Vajjha
,
R. S.
, 2009, “
Numerical Study of Turbulent Flow and Heat Transfer Characteristics of Nanofluids Considering Variable Properties
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
290
302
.
31.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, 2003, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
851
862
.
32.
Wei
,
I. C.
, 1984, “
A Local Composition Model for liquid Mixture Shear Viscosity
,” Ph.D. thesis, Rice University, Houston, TX.
33.
Shulgin
,
I. L.
, and
Ruckenstein
,
E.
, 2008, “
An Improved Local Composition Expression and Its Implication for Phase Equilibrium Models
,”
Ind. Eng. Chem. Res.
0888-5885,
47
, pp.
7877
7880
.
34.
Sadeghi
,
R.
, 2005, “
New Local Composition Model for Polymer Solutions
,”
Polymer
0032-3861,
46
, pp.
11517
11526
.
35.
Domańska
,
U.
,
Marciniak
,
A.
, and
Królikowski
,
M.
, 2008, “
Phase Equilibria and Modeling of Ammonium Ionic Liquid, C2NTf2, Solutions
,”
J. Phys. Chem. B
1089-5647,
112
, pp.
1218
1225
.
36.
Renon
,
H.
, and
Prausnitz
,
J. M.
, 1968, “
Local Composition in Thermodynamics Excess Functions for Liquid Mixtures
,”
AIChE J.
0001-1541,
14
, pp.
135
144
.
You do not currently have access to this content.