Abstract

Nanofluids—fluid suspensions of nanometer-sized particles—are a very important area of emerging technology and are playing an increasingly important role in the continuing advances of nanotechnology and biotechnology worldwide. They have enormously exciting potential applications and may revolutionize the field of heat transfer. This review is on the advances in our understanding of heat-conduction process in nanofluids. The emphasis centers on the thermal conductivity of nanofluids: its experimental data, proposed mechanisms responsible for its enhancement, and its predicting models. A relatively intensified effort has been made on determining thermal conductivity of nanofluids from experiments. While the detailed microstructure-conductivity relationship is still unknown, the data from these experiments have enabled some trends to be identified. Suggested microscopic reasons for the experimental finding of significant conductivity enhancement include the nanoparticle Brownian motion, the Brownian-motion-induced convection, the liquid layering at the liquid-particle interface, and the nanoparticle cluster/aggregate. Although there is a lack of agreement regarding the role of the first three effects, the last effect is generally accepted to be responsible for the reported conductivity enhancement. The available models of predicting conductivity of nanofluids all involve some empirical parameters that negate their predicting ability and application. The recently developed first-principles theory of thermal waves offers not only a macroscopic reason for experimental observations but also a model governing the microstructure-conductivity relationship without involving any empirical parameter.

References

1.
Maxwell
,
J. C.
, 1873,
Treatise on Electricity and Magnetism
,
Clarendon
,
Oxford
.
2.
Maxwell
,
J. C.
, 1881,
A Treatise on Electricity and Magnetism
, Vol.
1
, 2nd ed.,
Clarendon
,
Oxford
.
3.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds.,
ASME
,
New York
,
FED-231
, pp.
99
105
.
4.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
, 2006, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transfer Eng.
0145-7632,
27
(
10
), pp.
3
19
.
5.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
T.
, 2008,
Nanofluids: Science and Technology
,
Wiley
,
Hoboken, NJ
.
6.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
, 2004, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
1531-7331,
34
, pp.
219
246
.
7.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
, 2009, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
3187
3196
.
8.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. G.
, 2005, “
Nanofluids for Thermal Transport
,”
Mater. Today
1369-7021,
8
(
6
), pp.
36
44
.
9.
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
, 2007, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
1
19
.
10.
Wang
,
L. Q.
, and
Wei
,
X.
, 2009, “
Nanofluids: Synthesis, Heat Conduction, and Extension
,”
ASME J. Heat Transfer
0022-1481,
131
, pp.
033102
.
11.
Wei
,
X. H.
, and
Wang
,
L. Q.
, 2009, “
1+1>2: Extraordinary Fluid Conductivity Enhancement
,”
Curr. Nanosci.
1573-4137,
5
, pp.
527
529
.
12.
Wei
,
X.
,
Zhu
,
H.
,
Kong
,
T.
, and
Wang
,
L. Q.
, 2009, “
Synthesis and thermal Conductivity of Cu2O Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
4371
4374
.
13.
Liu
,
M. S.
,
Lin
,
M. C. C.
,
Huang
,
I. T.
, and
Wang
,
C. C.
, 2005, “
Enhancement of Thermal Conductivity With Carbon Nanotube for Nanofluids
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
(
9
), pp.
1202
1210
.
14.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
, and
Keblinski
,
P.
, 2004, “
Nanofluids
,”
Encyclopedia of Nanoscience and Nanotechnology
,
H. S.
Nalwa
, ed.,
American Scientific
,
Valencia, CA
, pp.
757
773
.
15.
Peterson
,
G. P.
, and
Li
,
C. H.
, 2006, “
Heat and Mass Transfer in Fluids With Nanoparticle Suspensions
,”
Adv. Heat Transfer
0065-2717,
39
, pp.
257
376
.
16.
Wang
,
L. Q.
, and
Quintard
,
M.
, 2009, “
Nanofluids of the Future
,”
Advances in Transport Phenomena
,
Springer
,
New York
, pp.
179
243
.
17.
Davis
,
W. R.
, 1984, “
Hot-Wire Method for the Measurement of the Thermal Conductivity of Refractory Materials
,”
Compendium of Thermophysical Property Measurement Method
, Vol.
1
,
K.
Maglic
,
A.
Cezairliyan
, and
V.
Peletsky
, eds.,
Plenum
,
New York
, pp.
231
254
.
18.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Sreekumaran
,
N. A.
,
George
,
B.
, and
Pradeep
,
T.
, 2003, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
0003-6951,
83
(
14
), pp.
2931
2933
.
19.
Assael
,
M. J.
,
Antoniadis
,
K. D.
, and
Tzetzis
,
D.
, 2008, “
The Use of the Transient Hot-Wire Technique for Measurement of the Thermal Conductivity of an Epoxy-Resin Reinforced With Glass Fibres and/or Carbon Multi-Walled Nanotubes
,”
Compos. Sci. Technol.
0266-3538,
68
, pp.
3178
3183
.
20.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
(
4
), pp.
567
574
.
21.
Chopkar
,
M.
,
Sudarshan
,
S.
,
Das
,
P. K.
, and
Manna
,
I.
, 2008, “
Effect of Particle Size on Thermal Conductivity of Nanofluids
,”
Metall. Mater. Trans. A
1073-5623,
39
, pp.
1535
1542
.
22.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
, 1999, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
0887-8722,
13
(
4
), pp.
474
480
.
23.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
, 1993, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2, and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
0913-946X,
4
(
4
), pp.
227
233
.
24.
Lee
,
S. P.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
25.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
0196-4313,
1
(
3
), pp.
187
191
.
26.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
(
6
), pp.
718
720
.
27.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
(
14
), pp.
2252
2254
.
28.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2005, “
Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,”
Int. J. Therm. Sci.
1290-0729,
44
(
4
), pp.
367
373
.
29.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
, 2009, “
Measurement of Temperature-Dependent Thermal Conductivity and Viscosity of TiO2-Water Nanofluids
,”
Exp. Therm. Fluid Sci.
0894-1777,
33
, pp.
706
714
.
30.
Assael
,
M. J.
,
Metaxa
,
I. N.
,
Kakosimos
,
K.
, and
Constantinou
,
D.
, 2006, “
Thermal Conductivity of Nanofluids—Experimental and Theoretical
,”
Int. J. Thermophys.
0195-928X,
27
(
4
), pp.
999
1017
.
31.
Hong
,
T. K.
,
Yang
,
H. S.
, and
Choi
,
C. J.
, 2005, “
Study of the Enhanced Thermal Conductivity of Fe Nanofluids
,”
J. Appl. Phys.
0021-8979,
97
(
6
), p.
064311
.
32.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2008, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
560
568
.
33.
Xie
,
H.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
, 2003, “
Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
0021-8979,
94
(
8
), pp.
4967
4971
.
34.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
, and
Liu
,
Y.
, 2002, “
Thermal Conductivity of Suspensions Containing Nanosized SiC Particles
,”
Int. J. Thermophys.
0195-928X,
23
(
2
), pp.
571
580
.
35.
Putnam
,
S. A.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
, 2006, “
Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
0021-8979,
99
, pp.
084308
.
36.
Lee
,
J. H.
,
Hwang
,
K. S.
,
Jang
,
S. P.
,
Lee
,
B. H.
,
Kim
,
J. H.
,
Choi
,
S. U. S.
, and
Choi
,
C. J.
, 2008, “
Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
2651
2656
.
37.
Hong
,
K. S.
,
Hong
,
T. K.
, and
Yang
,
H. S.
, 2006, “
Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
88
(
3
), p.
031901
.
38.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
, 2007, “
Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles
,”
Exp. Therm. Fluid Sci.
0894-1777,
31
(
6
), pp.
593
599
.
39.
Assael
,
M. J.
,
Chen
,
C. F.
,
Metaxa
,
I.
, and
Wakeham
,
W. A.
, 2004, “
Thermal Conductivity of Suspensions of Carbon Nanotubes in Water
,”
Int. J. Thermophys.
0195-928X,
25
(
4
), pp.
971
985
.
40.
Assael
,
M. J.
,
Metaxa
,
I. N.
,
Arvanitidis
,
J.
,
Christofilos
,
D.
, and
Lioutas
,
C.
, 2005, “
Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Presence of Two Different Dispersants
,”
Int. J. Thermophys.
0195-928X,
26
(
3
), pp.
647
664
.
41.
Ding
,
Y. L.
,
Alias
,
H.
,
Wen
,
D. S.
, and
Williams
,
R. A.
, 2006, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
1–2
), pp.
240
250
.
42.
Biercuk
,
M. J.
,
Llaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
,
Johnson
,
A. T.
, and
Fischer
,
J. E.
, 2002, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
0003-6951,
80
(
15
), pp.
2767
2769
.
43.
Chen
,
H.
,
Yang
,
W.
,
He
,
Y.
,
Ding
,
Y.
,
Zhang
,
L.
,
Tan
,
C.
,
Lapkin
,
A. A.
, and
Bavykin
,
D. V.
, 2008, “
Heat Transfer and Flow Behaviour of Aqueous Suspensions of Titanate Nanotubes (Nanofluids)
,”
Powder Technol.
0032-5910,
183
, pp.
63
72
.
44.
Cao
,
B. Y.
, and
Guo
,
Z. Y.
, 2007, “
Equation of Motion of a Phonon Gas and Non-Fourier Heat Conduction
,”
J. Appl. Phys.
0021-8979,
102
, p.
053503
.
45.
Li
,
C. H.
, and
Peterson
,
G. P.
, 2007, “
The Effect of Particle Size on the Effective Thermal Conductivity of Al2O3-Water Nanofluids
,”
J. Appl. Phys.
0021-8979,
101
, p.
044312
.
46.
Wen
,
D. S.
, and
Ding
,
Y. L.
, 2004, “
Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotubes Nanofluids)
,”
J. Thermophys. Heat Transfer
0887-8722,
18
(
4
), pp.
481
485
.
47.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
, 2005, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
153107
.
48.
Chopkar
,
M.
,
Das
,
P. K.
, and
Manna
,
I.
, 2006, “
Synthesis and Characterization of Nanofluid for Advanced Heat Transfer Applications
,”
Scr. Mater.
1359-6462,
55
(
6
), pp.
549
552
.
49.
Shima
,
P. D.
,
Philip
,
J.
, and
Raj
,
B.
, 2009, “
Role of Microconvection Induced by Brownian Motion of Nanoparticles in the Enhanced Thermal Conductivity of Stable Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
94
, p.
223101
.
50.
Beck
,
M. P.
,
Yuan
,
Y. H.
,
Warrier
,
P.
, and
Teja
,
A. S.
, 2009, “
The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids
,”
J. Nanopart. Res.
1388-0764,
11
(
5
), pp.
1129
1136
.
51.
Fang
,
K. C.
,
Weng
,
C. I.
, and
Ju
,
S. P.
, 2006, “
An Investigation Into the Structural Features and Thermal Conductivity of Silicon Nanoparticles Using Molecular Dynamics Simulations
,”
Nanotechnology
0957-4484,
17
(
15
), pp.
3909
3914
.
52.
Li
,
C. H.
, and
Peterson
,
G. P.
, 2006, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
J. Appl. Phys.
0021-8979,
99
(
8
), p.
084314
.
53.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
, 2009, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
363
371
.
54.
Philip
,
J.
,
Shima
,
P. D.
, and
Raj
,
B.
, 2008, “
Evidence for Enhanced Thermal Conduction Through Percolating Structures in Nanofluids
,”
Nanotechnology
0957-4484,
19
, p.
305706
.
55.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
, and
Ai
,
F.
, 2002, “
Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles
,”
J. Appl. Phys.
0021-8979,
91
(
7
), pp.
4568
4572
.
56.
Hone
,
J.
, 2004, “
Carbon Nanotubes: Thermal Properties
,”
J. Nanosci. Nanotechnol.
1533-4880,
6
, pp.
603
610
.
57.
Shiomi
,
J.
, and
Maruyama
,
S.
, “
Diffusive-Ballistic Heat Conduction of Carbon Nanotubes and Nanographene Ribbons
,”
Int. J. Thermophys.
0195-928X, in press.
58.
Hone
,
J.
,
Whitney
,
M.
, and
Zettl
,
A.
, 1999, “
Thermal Conductivity of Single-Walled Carbon Nanotubes
,”
Synth. Met.
0379-6779,
103
(
1–3
), pp.
2498
2499
.
59.
Berber
,
S.
,
Kwon
,
Y. K.
, and
Tomanek
,
D.
, 2000, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
84
(
20
), pp.
4613
4616
.
60.
Chen
,
G.
, 2000, “
Particularities of Heat Conduction in Nanostructures
,”
J. Nanopart. Res.
1388-0764,
2
, pp.
199
204
.
61.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L. P.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nature Mater.
1476-1122,
2
(
11
), pp.
731
734
.
62.
Yu
,
C. J.
,
Richter
,
A. G.
,
Datta
,
A.
,
Durbin
,
M. K.
, and
Dutta
,
P.
, 1999, “
Observation of Molecular Layering in Thin Liquid Films Using X-Ray Reflectivity
,”
Phys. Rev. Lett.
0031-9007,
82
(
11
), pp.
2326
2329
.
63.
Yu
,
C. J.
,
Richter
,
A. G.
,
Datta
,
A.
,
Durbin
,
M. K.
, and
Dutta
,
P.
, 2000, “
Molecular Layering in a Liquid on a Solid Substrate: An X-Ray Reflectivity Study
,”
Physica B
0921-4526,
283
(
1–3
), pp.
27
31
.
64.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
855
863
.
65.
Lennard-Jones
,
J. E.
, and
Devonshire
,
A. F.
, 1937, “
Critical Phenomena in Gases. I
,”
Proc. R. Soc. London, Ser. A
0950-1207,
163
(
912
), pp.
53
70
.
66.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2003, “
Two Regimes of Thermal Resistance at a Liquid-Solid Interface
,”
J. Chem. Phys.
0021-9606,
118
(
1
), pp.
337
339
.
67.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2004, “
Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4277
4284
.
68.
Henderson
,
J. R.
, and
Vanswol
,
F.
, 1984, “
On the Interface Between a Fluid and a Planar Wall—Theory and Simulations of a Hard-Sphere Fluid at a Hard-Wall
,”
Mol. Phys.
0026-8976,
51
(
4
), pp.
991
1010
.
69.
Eapen
,
J.
,
Li
,
J.
, and
Yip
,
S.
, 2007, “
Beyond Maxwell Limit: Thermal Conduction in Nanofluids With Percolating Fluid Structures
,”
Phys. Rev. E
1063-651X,
76
, p.
062501
.
70.
Kim
,
S. H.
,
Choi
,
S. R.
, and
Kim
,
D.
, 2007, “
Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation
,”
ASME J. Heat Transfer
0022-1481,
129
(
3
), pp.
298
307
.
71.
Liu
,
M. S.
,
Lin
,
M. C. C.
,
Tsai
,
C. Y.
, and
Wang
,
C. C.
, 2006, “
Enhancement of Thermal Conductivity With Cu for Nanofluids Using Chemical Reduction Method
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
17–18
), pp.
3028
3033
.
72.
Zhu
,
H. T.
,
Zhang
,
C. Y.
,
Liu
,
S. Q.
,
Tang
,
Y. M.
, and
Yin
,
Y. S.
, 2006, “
Effects of Nanoparticle Clustering and Alignment On Thermal Conductivities of Fe3O4 Aqueous Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
(
2
), p.
023123
.
73.
Zhu
,
H. T.
,
Zhang
,
C. Y.
,
Tang
,
Y. M.
, and
Wang
,
J. X.
, 2007, “
Novel Synthesis and Thermal Conductivity of CuO Nanofluid
,”
J. Phys. Chem. C
1932-7447,
111
(
4
), pp.
1646
1650
.
74.
Fricke
,
H.
, 1924, “
A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems: I. The Electric Conductivity of a Suspension of Homogeneous Spheroids
,”
Phys. Rev.
0031-899X,
24
, pp.
575
587
.
75.
Nan
,
C. W.
, 1993, “
Physics of Inhomogeneous Inorganic Materials
,”
Prog. Mater. Sci.
0079-6425,
37
(
1
), pp.
1
116
.
76.
Nan
,
C. W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
, 1997, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
0021-8979,
81
(
10
), pp.
6692
6699
.
77.
Prasher
,
R.
,
Evans
,
W.
,
Meakin
,
P.
,
Fish
,
J.
,
Phelan
,
P.
, and
Keblinski
,
P.
, 2006, “
Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
143119
.
78.
Gao
,
L.
,
Zhou
,
X.
, and
Ding
,
Y.
, 2007, “
Effective Thermal and Electrical Conductivity of Carbon Nanotube Composites
,”
Chem. Phys. Lett.
0009-2614,
434
, pp.
297
300
.
79.
Nan
,
C. W.
,
Shi
,
Z.
, and
Lin
,
Y.
, 2003, “
A Simple Model for Thermal Conductivity of Carbon Nanotube-Based Composites
,”
Chem. Phys. Lett.
0009-2614,
375
, pp.
666
669
.
80.
Patel
,
H. E.
,
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, 2008, “
Model for Thermal Conductivity of CNT-Nanofluids
,”
Bull. Mater. Sci.
0250-4707,
31
(
3
), pp.
387
390
.
81.
Xue
,
Q. Z.
, 2005, “
Model for Thermal Conductivity of Carbon Nanotube-Based Composites
,”
Physica B
0921-4526,
368
(
1–4
), pp.
302
307
.
82.
Xue
,
Q. Z.
, 2006, “
Model for the Effective Thermal Conductivity of Carbon Nanotube Composites
,”
Nanotechnology
0957-4484,
17
, pp.
1655
1660
.
83.
Zhou
,
X. F.
, and
Gao
,
L.
, 2006, “
Effective Thermal Conductivity in Nanofluids of Nonspherical Particles With Interfacial Thermal Resistance: Differential Effective Medium Theory
,”
J. Appl. Phys.
0021-8979,
100
, p.
024913
.
84.
Furth
,
R.
, 1956,
Investigations on the Theory of the Brownian Movement by Albert Einstein
,
Dover
,
New York
.
85.
Prasher
,
R.
, 2005, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
025901
.
86.
Eapen
,
J.
,
Rusconi
,
R.
,
Piazza
,
R.
, and
Yip
,
S.
, 2010, “
The Classical Nature of Thermal Conduction in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
132
(
10
), p.
102402
.
87.
Evans
,
W.
,
Fish
,
J.
, and
Keblinski
,
P.
, 2006, “
Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity
,”
Appl. Phys. Lett.
0003-6951,
88
(
9
), p.
093116
.
88.
Piazza
,
R.
, 2004, “
‘Thermal Forces’: Colloids in Temperature Gradients
,”
J. Phys.: Condens. Matter
0953-8984,
16
(
38
), pp.
S4195
S4211
.
89.
Gupte
,
S. K.
,
Advani
,
S. G.
, and
Huq
,
P.
, 1995, “
Role of Micro-Convection Due to Non-Affine Motion of Particles in a Mono-Disperse Suspension
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
16
), pp.
2945
2958
.
90.
Leal
,
L. G.
, 1973, “
On the Effective Conductivity of a Dilute Suspension of Spherical Drops in the Limit of Low Particle Peclet Number
,”
Chem. Eng. Commun.
0098-6445,
1
(
1
), pp.
21
31
.
91.
Keblinski
,
P.
, and
Thomin
,
J.
, 2006, “
Hydrodynamic Field Around a Brownian Particle
,”
Phys. Rev. E
1063-651X,
73
, p.
010502
.
92.
Kuwabara
,
S.
, 1959, “
The Forces Experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers
,”
J. Phys. Soc. Jpn.
0031-9015,
14
, pp.
527
532
.
93.
Jung
,
J. Y.
, and
Yoo
,
J. Y.
, 2009, “
Thermal Conductivity Enhancement of Nanofluids in Conjunction With Electrical Double Layer (EDL)
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
525
528
.
94.
Domingues
,
G.
,
Volz
,
S.
,
Joulain
,
K.
, and
Greffet
,
J. J.
, 2005, “
Heat Transfer Between Two Nanoparticles Through Near Field Interaction
,”
Phys. Rev. Lett.
0031-9007,
94
(
8
), p.
085901
.
95.
Ben-Abdallah
,
P.
, 2006, “
Heat Transfer Through Near-Field Interactions in Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
(
11
), p.
113117
.
96.
Vadasz
,
J. J.
,
Govender
,
S.
, and
Vadasz
,
P.
, 2005, “
Heat Transfer Enhancement in Nano-Fluids Suspensions: Possible Mechanisms and Explanations
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2673
2683
.
97.
Eapen
,
J.
,
Li
,
J.
, and
Yip
,
S.
, 2007, “
Mechanism of Thermal Transport in Dilute Nanocolloids
,”
Phys. Rev. Lett.
0031-9007,
98
, p.
028302
.
98.
Tzou
,
D. Y.
, 1997,
Macro- to Microscale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
Washington, DC
.
99.
Wang
,
L. Q.
,
Zhou
,
X. S.
, and
Wei
,
X. H.
, 2008,
Heat Conduction: Mathematical Models and Analytical Solutions
,
Springer-Verlag
,
Heidelberg
.
100.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L. W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J. H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W. H.
,
Zhao
,
X. Z.
, and
Zhou
,
S. Q.
, 2009, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
0021-8979,
106
, p.
094312
.
101.
Kang
,
H. U.
,
Kim
,
S. H.
, and
Oh
,
J. M.
, 2006, “
Estimation Of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume
,”
Exp. Heat Transfer
0891-6152,
19
, pp.
181
191
.
102.
Jana
,
S.
,
Salehi-Khojin
,
A.
, and
Zhong
,
W. H.
, 2007, “
Enhancement of Fluid Thermal Conductivity by the Addition of Single and Hybrid Nano-Additives
,”
Thermochim. Acta
0040-6031,
462
, pp.
45
55
.
103.
Shaikh
,
S.
,
Lafdi
,
K.
, and
Ponnappan
,
R.
, 2007, “
Thermal Conductivity Improvement in Carbon Nanoparticle Doped PAO-Oil
,”
J. Appl. Phys.
0021-8979,
101
, p.
064302
.
104.
Wiener
,
O.
, 1912, “
Die Theorie des Mischkörpers für das Feld der stationaren Strömung. Erste Abhandlung: Die Mittel wert sätze fur Kraft, Polarisation und Energie
,”
Abh. Math.-Phys. Kl. Königl. Sächs. Ges.
,
32
, pp.
509
604
.
105.
Nielsen
,
L. E.
, 1978,
Predicting the Properties of Mixtures: Mixture Rules in Science and Engineering
,
Dekker
,
New York
.
106.
Bottcher
,
C. J. F.
, 1945, “
The Dielectric Constant of Crystalline Powders
,”
Recueil des travaux chimiques des Pays-Bas
,
64
, pp.
47
51
.
107.
Bruggeman
,
D. A. G.
, 1935, “
Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen
,”
Ann. Phys.
0003-3804,
416
, pp.
636
664
.
108.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1962, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys.
0021-8979,
33
(
10
), pp.
3125
3131
.
109.
Kwak
,
K.
, and
Kim
,
C.
, 2005, “
Viscosity and Thermal Conductivity of Copper Oxide Nanofluid Dispersed in Ethylene Glycol
,”
Korea-Aust. Rheol. J.
1226-119X,
17
(
2
), pp.
35
40
.
110.
Wen
,
D. S.
, and
Ding
,
Y. L.
, 2004, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
24
), pp.
5181
5188
.
111.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
, 2006, “
Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids
,”
Int. J. Thermophys.
0195-928X,
27
(
2
), pp.
569
580
.
112.
Yu
,
W.
, and
Choi
,
S. U. S.
, 2003, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
1388-0764,
5
, pp.
167
171
.
113.
Leong
,
K. C.
,
Yang
,
C.
, and
Murshed
,
S. M. S.
, 2006, “
A Model for the Thermal Conductivity of Nanofluids—The Effect of Interfacial Layer
,”
J. Nanopart. Res.
1388-0764,
8
(
2
), pp.
245
254
.
114.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2009, “
A Combined Model for the Effective Thermal Conductivity of Nanofluids
,”
Appl. Therm. Eng.
1359-4311,
29
, pp.
2477
2483
.
115.
Wang
,
B. X.
,
Zhou
,
L. P.
, and
Peng
,
X. F.
, 2003, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2665
2672
.
116.
Xue
,
Q.
, and
Xu
,
W. M.
, 2005, “
A Model of Thermal Conductivity of Nanofluids With Interfacial Shells
,”
Mater. Chem. Phys.
0254-0584,
90
(
2–3
), pp.
298
301
.
117.
Yu
,
W.
, and
Choi
,
S. U. S.
, 2004, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Hamilton-Crosser Model
,”
J. Nanopart. Res.
1388-0764,
6
, pp.
355
361
.
118.
Ren
,
Y.
,
Xie
,
H.
, and
Cai
,
A.
, 2005, “
Effective Thermal Conductivity of Nanofluids Containing Spherical Nanoparticles
,”
J. Phys. D
0022-3727,
38
(
21
), pp.
3958
3961
.
119.
Xie
,
H. Q.
,
Fujii
,
M.
, and
Zhang
,
X.
, 2005, “
Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
14
), pp.
2926
2932
.
120.
Xuan
,
Y. M.
,
Li
,
Q.
, and
Hu
,
W. F.
, 2003, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
0001-1541,
49
(
4
), pp.
1038
1043
.
121.
Xuan
,
Y.
, and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
0142-727X,
21
(
1
), pp.
58
64
.
122.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
(
21
), pp.
4316
4318
.
123.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2007, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
129
(
5
), pp.
617
623
.
124.
Chen
,
G.
, 1996, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
118
(
3
), pp.
539
545
.
125.
Kapitza
,
P. L.
, 1941, “
The Study of Heat Transfer in Helium II
,”
J. Phys. (Moscow)
0368-3400,
4
, pp.
181
210
.
126.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2006, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
(
6
), pp.
588
595
.
127.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2004, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
1388-0764,
6
, pp.
577
588
.
128.
Kumar
,
D. H.
,
Patel
,
H. E.
,
Kumar
,
V. R. R.
,
Sundararajan
,
T.
,
Pradeep
,
T.
, and
Das
,
S. K.
, 2004, “
Model for Heat Conduction in Nanofluids
,”
Phys. Rev. Lett.
0031-9007,
93
(
14
), p.
144301
.
129.
Xu
,
J.
,
Yu
,
B.
,
Zhou
,
M.
, and
Xu
,
P.
, 2006, “
A New Model for Heat Conduction of Nanofluids Based on Fractal Distributions of Nanoparticles
,”
J. Phys. D
0022-3727,
39
, pp.
4486
4490
.
130.
Nan
,
C. W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
, 2004, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
85
(
16
), pp.
3549
3551
.
131.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
, 2006, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Nano Lett.
1530-6984,
6
(
7
), pp.
1529
1534
.
132.
Evans
,
W.
,
Prasher
,
R.
,
Fish
,
J.
,
Meakin
,
P.
,
Phelan
,
P.
, and
Keblinski
,
P.
, 2008, “
Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
1431
1438
.
133.
Wang
,
L. Q.
, and
Fan
,
J.
, 2010, “
Nanofluids Research: Key issues
,”
Nanoscale Res. Lett.
1931-7573,
5
, pp.
1241
1252
.
134.
Whitaker
,
S.
, 1999,
The Method of Volume Averaging
,
Kluwer Academic
,
Dordrecht
.
135.
Wang
,
L. Q.
, 2000, “
Flows Through Porous Media: A Theoretical Development at Macroscale
,”
Transp. Porous Media
0169-3913,
39
, pp.
1
24
.
136.
Wang
,
L. Q.
,
Xu
,
M. T.
, and
Wei
,
X. H.
, 2008, “
Multiscale Theorems
,”
Adv. Chem. Eng.
0065-2377,
34
, pp.
175
468
.
137.
Wang
,
L. Q.
, and
Wei
,
X.
, 2008, “
Equivalence Between Dual-Phase-Lagging and Two-Phase-System Heat Conduction Processes
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
1751
1756
.
138.
Quintard
,
M.
, and
Whitaker
,
S.
, 2000, “
Theoretical Analysis of Transport in Porous Media
,”
Handbook of Heat Transfer in Porous Media
,
K.
Vafai
, ed.,
Dekker
,
New York
, pp.
1
52
.
139.
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2002, “
Thermal Oscillation and Resonance in Dual-Phase-Lagging Heat Conduction
,”
Int. Commun. Heat Mass Transfer
0735-1933,
45
, pp.
1055
1061
.
140.
Fan
,
J.
, and
Wang
,
L. Q.
, 2010, “
Microstructural Effects on Macroscale Thermal Properties in Nanofluids
,”
NANO
1793-2920,
5
(
2
), pp.
117
125
.
141.
Fan
,
J.
, and
Wang
,
L. Q.
, 2010, “
Effective Thermal Conductivity of Nanofluids: the Effects of Microstructure
,”
J. Phys. D: Appl. Phys.
0022-3727,
43
, p.
165501
.
142.
Fan
,
J.
, and
Wang
,
L. Q.
, 2010, “
Is Classical Energy Equation Adequate for Convective Heat Transfer in Nanofluids?
,”
Adv. Mech. Eng.
1687-8132,
2010
, p.
719406
.
You do not currently have access to this content.