In this paper, the steady magnetohydrodynamic (MHD) mixed convection stagnation point flow of an incompressible, viscous, and electrically conducting fluid over a vertical flat plate is investigated. The effect of induced magnetic field is taken into account. Numerical results are obtained using an implicit finite-difference scheme. Both assisting and opposing flows are considered. The results for skin friction, heat transfer, and induced magnetic field coefficients are obtained and discussed for various parameters. The velocity, temperature, and induced magnetic field profiles are also presented. For the case of the opposing flow, it is found that dual solutions exist for a certain range of the buoyancy parameter. Dual solutions are also obtained for the assisting flow.

1.
Ariel
,
P. D.
, 1994, “
Hiemenz Flow in Hydromagnetics
,”
Acta Mech.
0001-5970,
103
, pp.
31
43
.
2.
Mahapatra
,
T. R.
, and
Gupta
,
A. S.
, 2001, “
Magnetohydrodynamic Stagnation Point Flow Towards a Stretching Sheet
,”
Acta Mech.
0001-5970,
152
, pp.
191
196
.
3.
Chen
,
C. H.
, 2010, “
Combined Effects of Joule Heating and Viscous Dissipation on Magnetohydrodynamic Flow Past a Permeable, Stretching Surface With Free Convection and Radiative Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
064503
.
4.
Cramer
,
K. R.
, 1963, “
Several Magneto-Hydrodynamic Free Convection Solutions
,”
ASME J. Heat Transfer
0022-1481,
85
, pp.
35
40
.
5.
Cobble
,
M. H.
, 1979, “
Free Convection With Mass Transfer Under the Influence of a Magnetic Field
,”
Nonlinear Anal. Theory, Methods Appl.
0362-546X,
3
, pp.
135
143
.
6.
Raptis
,
A.
,
Perdikis
,
C.
, and
Tzivanidis
,
G.
, 1981, “
Effects of Free Convection Currents on the Flow of an Electrically Conducting Fluid Past an Accelerated Vertical Infinite Plate With Variable Suction
,”
J. Appl. Math. Mech.
0021-8928,
61
, pp.
341
342
.
7.
Raptis
,
A.
,
Tzivanidis
,
G.
, and
Perdikis
,
C.
, 1981, “
Hydromagnetic Free Convection Flow Past an Accelerated Vertical Infinite Plate With Variable Suction and Heat Flux
,”
Lett. Heat Mass Transfer
0094-4548,
8
, pp.
137
143
.
8.
Soundalgekar
,
V. M.
,
Singh
,
M.
, and
Takhar
,
H. S.
, 1983, “
MHD Free Convection Past a Semi-Infinite Vertical Plate With Suction and Injection
,”
Nonlinear Anal. Theory, Methods Appl.
0362-546X,
7
, pp.
941
944
.
9.
Ramachandran
,
N.
,
Chen
,
T. S.
, and
Armaly
,
B. F.
, 1988, “
Mixed Convection in Stagnation Flows Adjacent to Vertical Surfaces
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
373
377
.
10.
Hossain
,
M. A.
, and
Ahmed
,
M.
, 1990, “
MHD Forced and Free Convection Boundary Layer Flow Near the Leading Edge
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
571
575
.
11.
Kumari
,
M.
,
Slaouti
,
A.
,
Takhar
,
H. S.
,
Nakamura
,
S.
, and
Nath
,
G.
, 1996, “
Unsteady Free Convection Flow Over a Continuous Moving Vertical Surface
,”
Acta Mech.
0001-5970,
116
, pp.
75
82
.
12.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
, 2006, “
Magnetohydrodynamic Stagnation-Point Flow Towards a Stretching Vertical Sheet
,”
Magnetohydrodynamics
0025-0015,
42
, pp.
17
30
.
13.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
, 2007, “
Mixed Convection on the Stagnation Point Flow Toward a Vertical, Continuously Stretching Sheet
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1087
1090
.
14.
Ishak
,
A.
,
Nazar
,
R.
,
Arifin
,
N. M.
, and
Pop
,
I.
, 2007, “
Dual Solutions in Magnetohydrodynamic Mixed Convection Flow Near a Stagnation-Point on a Vertical Surface
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1212
1216
.
15.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
, 2008, “
Hydromagnetic Flow and Heat Transfer Adjacent to a Stretching Vertical Sheet
,”
Heat Mass Transfer
0947-7411,
44
, pp.
921
927
.
16.
Lok
,
Y. Y.
,
Amin
,
N.
,
Campean
,
D.
, and
Pop
,
I.
, 2005, “
Steady Mixed Convection Flow of a Micropolar Fluid Near the Stagnation Point on a Vertical Surface
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
15
, pp.
654
670
.
17.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
, 2008, “
Magnetohydrodynamic (MHD) Flow of a Micropolar Fluid Towards a Stagnation Point on a Vertical Surface
,”
Comput. Math. Appl.
0898-1221,
56
, pp.
3188
3194
.
18.
Raptis
,
A.
, and
Perdikis
,
C.
, 1984, “
Free Convection Under the Influence of a Magnetic Field
,”
Nonlinear Anal. Theory, Methods Appl.
0362-546X,
8
, pp.
749
756
.
19.
Kumari
,
M.
,
Takhar
,
H. S.
, and
Nath
,
G.
, 1990, “
MHD Flow and Heat Transfer Over a Stretching Surface With Prescribed Wall Temperature or Heat Flux
,”
Waerme- Stoffuebertrag.
0042-9929,
25
, pp.
331
336
.
20.
Takhar
,
H. S.
,
Kumari
,
M.
, and
Nath
,
G.
, 1993, “
Unsteady Free Convection Flow Under the Influence of a Magnetic Field
,”
Arch. Appl. Mech.
0939-1533,
63
, pp.
313
321
.
21.
Hartmann
,
J.
, 1937, “
Theory of the Laminar Flow of an Electrically Conducting Liquid in a Homogeneous Magnetic Field
,”
Mat. Fys. Medd. K. Dan. Vidensk. Selsk.
0023-3323,
15
, pp.
1
28
.
22.
Cebeci
,
T.
, and
Bradshaw
,
P.
, 1984,
Physical and Computational Aspects of Convective Heat Transfer
,
Springer
,
New York
.
23.
Wang
,
C. Y.
, 2006, “
Stagnation Slip Flow and Heat Transfer on a Moving Plate
,”
Chem. Eng. Sci.
0009-2509,
61
, pp.
7668
7672
.
24.
Merkin
,
J. H.
, 1985, “
On Dual Solutions Occurring in Mixed Convection in a Porous Medium
,”
J. Eng. Math.
0022-0833,
20
, pp.
171
179
.
25.
Weidman
,
P. D.
,
Kubitschek
,
D. G.
, and
Davis
,
A. M. J.
, 2006, “
The Effect of Transpiration on Self-Similar Boundary Layer Flow Over Moving Surfaces
,”
Int. J. Eng. Sci.
0020-7225,
44
, pp.
730
737
.
26.
Harris
,
S. D.
,
Ingham
,
D. B.
, and
Pop
,
I.
, 2009, “
Mixed Convection Boundary-Layer Flow Near the Stagnation Point on a Vertical Surface in a Porous Medium: Brinkman Model With Slip
,”
Transp. Porous Media
0169-3913,
77
, pp.
267
285
.
You do not currently have access to this content.