Nonthermal irreversible electroporation (NTIRE) is an emerging tissue ablation modality that may be ideally suited in developing a decellularized tissue graft. NTIRE utilizes short electric pulses that produce nanoscale defects in the cell membrane lipid bilayer. The electric parameters can be chosen in such a way that Joule heating to the tissue is minimized and cell death occurs solely due to loss in cell homeostasis. By coupling NTIRE with the body’s response, the cells can be selectively ablated and removed, leaving behind a tissue scaffold. Here, we introduce two different methods for developing a decellularized arterial scaffold. The first uses an electrode clamp that is applied to the outside of a rodent carotid artery and the second applies an endovascular minimally invasive approach to apply electric fields from the inner surface of the blood vessels. Both methods are first modeled using a transient finite element analysis of electric and thermal fields to ensure that the electric parameters used in this study will result in minimal thermal damage. Experimental work demonstrates that both techniques result in not only a decellularized arterial construct but an endothelial regrowth is evident along the lumen 7 days after treatment, indicating that the extracellular matrix was not damaged by electric and thermal fields and is still able to support cell growth.

1.
Rubinsky
,
B.
, 2007, “
Irreversible Electroporation in Medicine
,”
Technol. Cancer Res. Treat.
1533-0346,
6
(
4
), pp.
255
259
.
2.
Lavee
,
J.
,
Onik
,
G.
,
Mikus
,
P.
, and
Rubinsky
,
B.
, 2007, “
A Novel Nonthermal Energy Source for Surgical Epicardial Artrial Ablation: Irreversible Electroporation
,”
Heart Surg. Forum
,
10
(
2
), pp.
E162
E167
. 0002-7820
3.
Rubinsky
,
B.
,
Onik
,
B.
, and
Mikus
,
P.
, 2007, “
Irreversible Electroporation: A New Ablation Modality—Clinical Implications
,”
Technol. Cancer Res. Treat.
1533-0346,
6
(
1
), pp.
37
48
.
4.
Miller
,
L.
,
Leor
,
J.
, and
Rubinsky
,
B.
, 2005, “
Cancer Cell Ablation With Irreversible Electroporation
,”
Technol. Cancer Res. Treat.
1533-0346,
4
(
6
), pp.
699
705
.
5.
Onik
,
G.
,
Mikus
,
P.
, and
Rubinsky
,
B.
, 2007, “
Irreversible Electroporation: Implications for Prostrate Ablation
,”
Technol. Cancer Res. Treat.
1533-0346,
6
(
4
), pp.
295
300
.
6.
Onik
,
G.
, and
Rubinsky
,
B.
, 2010, “
Irreversible Electroporation: First Patient Experience Focal Therapy of Prostate Cancer
,”
Irreversible Electroporation
,
Springer
,
Berlin
, pp.
235
247
.
7.
Thomson
,
K.
, 2010, “
Human Experience With Irreversible Electroporation
,”
Irreversible Electroporation
,
Springer
,
Berlin
, pp.
249
254
.
8.
Maor
,
E.
,
Ivorra
,
A.
, and
Rubinsky
,
B.
, 2009, “
Non Thermal Irreversible Electroporation: Novel Technology for Vascular Smooth Muscle Cell Ablation
,”
PLoS ONE
1932-6203,
4
(
3
), pp. e4757,
1
9
.
9.
Maor
,
E.
, and
Rubinsky
,
B.
, 2010, “
Endovascular Non-Thermal Irreversible Electroporation: A Finite Element Analysis
,”
ASME J. Biomech. Eng.
0148-0731,
132
, p.
031008
.
10.
Maor
,
E.
,
Ivorra
,
A.
,
Leor
,
J.
, and
Rubinsky
,
B.
, 2007, “
The Effect of Irreversible Electroporation on Blood Vessels
,”
Technol. Cancer Res. Treat.
1533-0346,
6
(
4
), pp.
307
312
.
11.
Huynh
,
T.
,
Abraham
,
G.
,
Murray
,
J.
,
Brockbank
,
K.
,
Hagen
,
P. -O.
, and
Sullivan
,
S.
, 1999, “
Remodeling of an Acellular Collagen Graft Into a Physiologically Responsive Neovessel
,”
Nat. Biotechnol.
1087-0156,
17
, pp.
1083
1086
.
12.
Clarke
,
D.
,
Lust
,
R.
,
Sun
,
Y.
,
Black
,
K.
, and
Ollerenshaw
,
J.
, 2001, “
Transformation of Nonvascular Acellular Tissue Matrices Into Durable Vascular Conduits
,”
Ann. Thorac. Surg.
0003-4975,
71
, pp.
S433
S436
.
13.
Conconi
,
M. T.
,
De Coppi
,
P.
,
Di Liddo
,
R.
,
Vigolo
,
S.
,
Zanon
,
G. F.
,
Parnigotto
,
P. P.
, and
Nussdorfer
,
G. G.
, 2005, “
Tracheal Matrices, Obtained by a Detergent-Enzymatic Method, Support In Vitro the Adhesion of Chondrocytes and Tracheal Epithelial Cells
,”
Transpl Int.
0934-0874,
18
, pp.
727
734
.
14.
Flynn
,
L.
,
Semple
,
J.
, and
Woodhouse
,
K.
, 2006, “
Decellularized Placental Matrices for Adipose Tissue Engineering
,”
J. Biomed. Mater. Res. Part A
1549-3296,
79
(
2
), pp.
359
369
.
15.
Ott
,
H.
,
Matthiesen
,
T.
,
Go
,
S. -K.
,
Black
,
L.
,
Kren
,
S.
,
Netoff
,
T.
, and
Taylor
,
D.
, 2008, “
Perfusion-Decellularized Matrix: Using Nature’s Platform to Engineer a Bioartificial Heart
,”
Nat. Med.
1078-8956,
14
, pp.
213
221
.
16.
Campbell
,
B.
, and
Campbell
,
J.
, 2007, “
Development of Tissue Engineered Vascular Grafts
,”
Curr. Pharm. Biotechnol.
1389-2010,
8
, pp.
43
50
.
17.
Gilbert
,
T.
,
Sellaro
,
T.
, and
Badylak
,
S.
, 2006, “
Decellularization of Tissues and Organs
,”
Biomaterials
0142-9612,
27
, pp.
3675
3683
.
18.
Maor
,
E.
,
Ivorra
,
A.
,
Mitchell
,
J.
, and
Rubinsky
,
B.
, “
Vascular Smooth Muscle Cell Ablation With Endovascular Non Thermal Irreversible Electroporation
,”
J. Vasc. Interv. Radiol.
1051-0443, accepted.
19.
Zhang
,
A.
,
Mi
,
X.
,
Yang
,
G.
, and
Xu
,
L.
, 2009, “
Numerical Study of Thermally Targeted Liposomal Drug Delivery in Tumor
,”
J. Heat Transfer
0022-1481,
131
(
4
), p.
043209
.
20.
Becker
,
S.
, and
Kuznetsov
,
A.
, 2007, “
Local Temperature Rises Influence In Vivo Electroporation Pore Development: A Numerical Stratum Corneum Lipid Phase Transition Model
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
712
721
.
21.
Becker
,
S.
, and
Kuznetsov
,
A.
, 2008, “
Thermal In Vivo Skin Electroporation Pore Development and Charged Macromolecule Transdermal Delivery: A Numerical Study of the Influence of Chemically Enhanced Lower Lipid Phase Transition Temperatures
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
7–8
), pp.
2060
2074
.
22.
Becker
,
S.
, and
Kuznetsov
,
A.
, 2007, “
Numerical Assessment of Thermal Response Associated With In Vivo Skin Electroporation: The Importance of the Composite Skin Model
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
3
), pp.
330
340
.
23.
Becker
,
S.
, and
Kuznetsov
,
A.
, 2007, “
Thermal Damage Reduction Associated With In Vivo Skin Electroporation: A Numerical Investigation Justifying Aggressive Pre-Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
1–2
), pp.
105
116
.
24.
Becker
,
S. M.
, and
Kuznetsov
,
A. V.
, 2006, “
Numerical Modeling of In Vivo Plate Electroporation Thermal Dose Assessment
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
76
84
.
25.
Gabriel
,
S.
,
Lau
,
R.
, and
Gabriel
,
C.
, 1996, “
The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz
,”
Phys. Med. Biol.
0031-9155,
41
(
11
), pp.
2251
2269
.
26.
Davalos
,
R.
,
Rubinsky
,
B.
, and
Mir
,
L.
, 2003, “
Theoretical Analysis of the Thermal Effects During In Vivo Tissue Electroporation
,”
Bioelectrochemistry
1567-5394,
61
, pp.
99
107
.
27.
Lee
,
R.
, and
Despa
,
F.
, 2005, “
Distinguishing Electroporation From Thermal Injuries in Electrical Shock by MR Imaging
,”
Conference Proceedings−IEEE Engineering in Medicine and Biology Society
, Vol.
6
, pp.
6544
6546
.
28.
Liu
,
J.
, and
Xu
,
L. X.
, 1999, “
Estimation of Blood Perfusion Using Phase Shift in Temperature Response to Sinusoidal Heating at the Skin Surface
,”
IEEE Trans. Biomed. Eng.
0018-9294,
46
(
9
), pp.
1037
1043
.
29.
Wissler
,
E. H.
, 1998, “
Pennes’ 1948 Paper Revisited
,”
J. Appl. Physiol.
0021-8987,
85
(
1
), pp.
35
41
.
30.
Tropea
,
B.
, and
Lee
,
R.
, 1992, “
Thermal Injury Kinetics in Electrical Trauma
,”
J. Biomech. Eng.
0148-0731,
114
, pp.
241
250
.
31.
Lee
,
R.
, 1991, “
Physical Mechanics of Tissue Injury in Electrical Trauma
,”
IEEE Trans. Educ.
0018-9359,
34
(
3
), pp.
223
230
.
32.
Chang
,
I.
, and
Nguyen
,
U.
, 2004, “
Thermal Modeling of Lesion Growth With Radiofrequency Ablation Devices
,”
Biomed. Eng. Online
1475-925X,
3
(
27
), pp.
1
19
.
33.
Agah
,
R.
,
Pearce
,
J.
,
Welch
,
A.
, and
Motamedi
,
M.
, 1994, “
Rate Process Model for Arterial Tissue Damage: Implications on Vessel Photocoagulation
,”
Lasers Surg. Med.
0196-8092,
15
, pp.
176
184
.
34.
Orgill
,
D.
,
Solari
,
M.
,
Barlow
,
M.
, and
O’Connor
,
N.
, 1998, “
A Finite-Element Model Predicts Thermal Damage in Cutaneous Contact Burns
,”
J. Burn Care Rehabil.
0273-8481,
19
(
3
), pp.
203
209
.
35.
Lee
,
R.
, and
Astumian
,
R.
, 1996, “
The Physicochemical Basis for Thermal and Non-Thermal ‘Burn’ Injuries
,”
Burns
0305-4179,
22
(
7
), pp.
509
519
.
36.
Wright
,
N.
, 2003, “
On a Relationship Between the Arrhenius Parameters From Thermal Damage Studies
,”
J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
300
304
.
37.
Maor
,
E.
,
Ivorra
,
A.
,
Leor
,
J.
, and
Rubinsky
,
B.
, 2008, “
Irreversible Electroporation Attenuates Neointimal Formation After Angioplasty
,”
IEEE Trans. Biomed. Eng.
0018-9294,
55
(
9
), pp.
2268
2274
.
38.
Diller
,
K.
, and
Pearce
,
J.
, 1999, “
Issues in Modeling Thermal Alterations in Tissues
,”
Ann. N.Y. Acad. Sci.
0077-8923,
888
, pp.
153
164
.
39.
Pearce
,
J.
, and
Thomsen
,
S.
, 1992, “
Kinetic Models of Tissue Fusion Processes
,”
Proc. SPIE
0277-786X,
1643
, pp.
251
260
.
40.
Maor
,
E.
, 2009, “
Fundamental Study on the Effects of Irreversible Electroporation Pulses on Blood Vessels With Application to Medical Treatment
,” Ph.D. thesis, University of California Berkeley, Berkeley, CA.
You do not currently have access to this content.