Our recent experimental studies indicate that nanostructured, chemically inhomogeneous surfaces are the origin of dropwise condensation of steam on ion implanted metals. Yet, the underlying microscopic mechanism governing this special condensation form is still not clear. We suggest a condensation model based on droplet nucleation and growth on elevated precipitates, resulting in short-term steam entrapment after droplet coalescence. According to the wetting theory, this transition state yields increased macroscopic contact angles. Condensation phenomena such as enlarging dropwise condensation areas in spite of increasing condensation rate become comprehensible by our model. Furthermore, it points out that for this special surface type, contact angles and surface free energies measured under ambient air conditions are not usable for predicting the condensation form of steam. Although the suggested microscopic model cannot be directly proved by experiment, its validity is supported by its capability of explaining experimental observations colliding with previous theoretical approaches.

1.
Schmidt
,
E.
,
Schurig
,
W.
, and
Sellschopp
,
W.
, 1930, “
Versuche über die Kondensation von Wasserdampf in Film-und Tropfenform
,”
Forsch. Ingenieurwes.
0015-7899,
1
(
2
), pp.
53
63
.
2.
Rose
,
J. W.
, 2002, “
Dropwise Condensation Theory and Experiment: A Review
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
216
, pp.
115
128
.
3.
Zhao
,
Q.
,
Zhang
,
D.
, and
Lin
,
J.
, 1988, “
A Study of Surface Materials Achieving Dropwise Condensation
,”
Proceedings of the First International Conference on Heat Transfer in Energy Conservation
,
Shenyang
, Vol.
1
, pp.
177
179
.
4.
Zhao
,
Q.
, and
Burnside
,
B. M.
, 1994, “
Dropwise Condensation of Steam on Ion Implanted Condenser Surfaces
,”
Heat Recovery Syst. CHP
0890-4332,
14
(
5
), pp.
525
534
.
5.
Rausch
,
M. H.
,
Leipertz
,
A.
, and
Fröba
,
A. P.
, 2010, “
On the Characteristics of Ion Implanted Metallic Surfaces Inducing Dropwise Condensation of Steam
,”
Langmuir
0743-7463,
26
(
8
), pp.
5971
5975
.
6.
Rausch
,
M. H.
,
Leipertz
,
A.
, and
Fröba
,
A. P.
, 2010, “
Dropwise Condensation of Steam on Ion Implanted Titanium Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
423
430
.
7.
Erb
,
R. A.
, 1968, “
Heterogeneous Nucleation in Dropwise Condensation
,”
Surface Phenomena of Metals
,
Society of Chemical Industry
,
London
, Vol.
28
, pp.
383
405
.
8.
McCormick
,
J. L.
, and
Westwater
,
J. W.
, 1965, “
Nucleation Sites for Dropwise Condensation
,”
Chem. Eng. Sci.
0009-2509,
20
, pp.
1021
1036
.
9.
Rose
,
J. W.
, 2004, “
Surface Tension Effects and Enhancement of Condensation Heat Transfer
,”
Chem. Eng. Res. Des.
0263-8762,
82
(
4
), pp.
419
429
.
10.
Johnson
,
R. E.
, and
Dettre
,
R. H.
, 1964, “
Contact Angle Hysteresis. I. Study of an Idealized Rough Surface
,”
Contact Angle, Wettability, and Adhesion, Advances in Chemistry Series
,
F. M.
Fowkes
, ed.,
American Chemical Society
,
Washington, DC
, Vol.
43
, pp.
112
135
.
11.
Wenzel
,
R. N.
, 1936, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
0019-7866,
28
, pp.
988
994
.
12.
Cassie
,
A. B. D.
, and
Baxter
,
S.
, 1944, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
0014-7672,
40
, pp.
546
551
.
13.
Young
,
T.
, 1805, “
An Essay on the Cohesion of Fluids
,”
Philos. Trans. R. Soc. London
0962-8428,
95
, pp.
65
87
.
14.
Kast
,
W.
, 1964, “
Bedeutung der Keimbildung und der instationären Wärmeübertragung für den Wärmeübergang bei Blasenverdampfung und Tropfenkondensation
,”
Chem.-Ing.-Tech.
0009-286X,
36
(
9
), pp.
933
940
.
15.
Eucken
,
A.
, 1937, “
Energie-und Stoffaustausch an Grenzflächen
,”
Naturwiss.
0028-1042,
25
, pp.
209
218
.
16.
Yongji
,
S.
,
Dunqi
,
X.
,
Jifang
,
L.
, and
Siexong
,
T.
, 1991, “
A Study on the Mechanism of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
0017-9310,
34
(
11
), pp.
2827
2831
.
17.
Rausch
,
M. H.
,
Fröba
,
A. P.
, and
Leipertz
,
A.
, 2008, “
Dropwise Condensation Heat Transfer on Ion Implanted Aluminum Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
5–6
), pp.
1061
1070
.
You do not currently have access to this content.