Our recent experimental studies indicate that nanostructured, chemically inhomogeneous surfaces are the origin of dropwise condensation of steam on ion implanted metals. Yet, the underlying microscopic mechanism governing this special condensation form is still not clear. We suggest a condensation model based on droplet nucleation and growth on elevated precipitates, resulting in short-term steam entrapment after droplet coalescence. According to the wetting theory, this transition state yields increased macroscopic contact angles. Condensation phenomena such as enlarging dropwise condensation areas in spite of increasing condensation rate become comprehensible by our model. Furthermore, it points out that for this special surface type, contact angles and surface free energies measured under ambient air conditions are not usable for predicting the condensation form of steam. Although the suggested microscopic model cannot be directly proved by experiment, its validity is supported by its capability of explaining experimental observations colliding with previous theoretical approaches.
Skip Nav Destination
e-mail: sek@ltt.uni-erlangen.de
e-mail: apf@ltt.uni-erlangen.de
Article navigation
September 2010
This article was originally published in
Journal of Heat Transfer
Technical Briefs
On the Mechanism of Dropwise Condensation of Steam on Ion Implanted Metallic Surfaces
Michael H. Rausch,
Michael H. Rausch
Lehrstuhl für Technische Thermodynamik (LTT),
Universität Erlangen-Nürnberg
, Am Weichselgarten 8, D-91058 Erlangen, Germany
Search for other works by this author on:
Alfred Leipertz,
Alfred Leipertz
Lehrstuhl für Technische Thermodynamik (LTT),
e-mail: sek@ltt.uni-erlangen.de
Universität Erlangen-Nürnberg
, Am Weichselgarten 8, D-91058 Erlangen, Germany
Search for other works by this author on:
Andreas P. Fröba
Andreas P. Fröba
Lehrstuhl für Technische Thermodynamik (LTT),
e-mail: apf@ltt.uni-erlangen.de
Universität Erlangen-Nürnberg
, Am Weichselgarten 8, D-91058 Erlangen, Germany
Search for other works by this author on:
Michael H. Rausch
Lehrstuhl für Technische Thermodynamik (LTT),
Universität Erlangen-Nürnberg
, Am Weichselgarten 8, D-91058 Erlangen, Germany
Alfred Leipertz
Lehrstuhl für Technische Thermodynamik (LTT),
Universität Erlangen-Nürnberg
, Am Weichselgarten 8, D-91058 Erlangen, Germanye-mail: sek@ltt.uni-erlangen.de
Andreas P. Fröba
Lehrstuhl für Technische Thermodynamik (LTT),
Universität Erlangen-Nürnberg
, Am Weichselgarten 8, D-91058 Erlangen, Germanye-mail: apf@ltt.uni-erlangen.de
J. Heat Transfer. Sep 2010, 132(9): 094503 (3 pages)
Published Online: July 15, 2010
Article history
Received:
December 1, 2009
Revised:
April 13, 2010
Online:
July 15, 2010
Published:
July 15, 2010
Citation
Rausch, M. H., Leipertz, A., and Fröba, A. P. (July 15, 2010). "On the Mechanism of Dropwise Condensation of Steam on Ion Implanted Metallic Surfaces." ASME. J. Heat Transfer. September 2010; 132(9): 094503. https://doi.org/10.1115/1.4001646
Download citation file:
Get Email Alerts
Cited By
Related Articles
Wetting Mode Evolution of Steam Dropwise Condensation on Superhydrophobic Surface in the Presence of Noncondensable Gas
J. Heat Transfer (February,2012)
Condensation on Superhydrophobic Copper Oxide Nanostructures
J. Heat Transfer (September,2013)
Two-Phase Flow Modeling and Measurements in Low-Pressure Turbines—Part I: Numerical Validation of Wet Steam Models and Turbine Modeling
J. Eng. Gas Turbines Power (April,2015)
Nonrealizability Problem With Quadrature Method of Moments in Wet-Steam Flows and Solution Techniques
J. Eng. Gas Turbines Power (January,2017)
Related Chapters
Nucleation of Bubbles in Perfluoropentane Droplets Under Ultrasonic Excitation
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Condensation in Cool Roofs—Code Challenges, Field Observations, and Hygrothermal Modeling
Roofing Research and Standards Development: 10th Volume
Evaluation of Moisture Accumulation in Composite Roof Decks in High Humidity Environments such as Natatoriums in Cold Climates Using Hygrothermal Modeling
Roofing Research and Standards Development: 10th Volume