A pool boiling regime map demarcating the boundary between the surface tension and buoyancy dominated boiling regimes is developed based on heater size and gravity. For large heaters and/or high gravity conditions, boiling is dominated by buoyancy, and the ebullition cycle dominates the contribution to heat transfer. As the gravity level and/or heater size is decreased, surface tension forces become increasingly dominant, and a decrease in heat transfer is observed. The ratio of the heater size Lh (length of a side for a square heater) to the capillary length Lc is found to be a suitable parameter to define the transition criterion between these regimes. Based on the data obtained using FC-72 and pentane, the threshold value of Lh/Lc above which pool boiling is buoyancy dominated was found to be about 2.1. This transition criterion was found to be the same for gravity levels between 0g1.7g and liquid subcoolings between 6.6°C and 26.6°C.

1.
Rohsenow
,
W. M.
, 1962, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
0097-6822,
84
, pp.
969
976
.
2.
Forster
,
H. K.
, and
Zuber
,
N.
, 1955, “
Dynamics of Vapor Bubbles and Boiling Heat Transfer
,”
AIChE J.
0001-1541,
1
, pp.
531
535
.
3.
Stephan
,
K.
, and
Abdelsalam
,
M.
, 1980, “
Heat Transfer Correlations for Natural Convection Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
23
, pp.
73
87
.
4.
Kutateladze
,
S. S.
, 1948, “
On the Transition Film Boiling Under Natural Convection
,”
Kotloturbostroenie
, Vol.
3
, pp.
10
12
.
5.
Zuber
,
N.
, 1959, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” AEC Report No. AECU-4439.
6.
Yaddanapuddi
,
N.
, and
Kim
,
J.
, 2000, “
Single Bubble Heat Transfer in Saturated Pool Boiling of FC-72
,”
Multiphase Sci. Technol.
0276-1459,
12
(
3–4
), pp.
47
63
.
7.
Di Marco
,
P.
, and
Grassi
,
W.
, 2000, “
Pool Boiling in Microgravity: Assessed Results and Open Issues
,”
Proceedings of the Third European Thermal-Sciences Conference
, Pisa, Italy,
ETS
, Sept. 10–13.
8.
Lin
,
L.
, and
Pisano
,
A.
, 1991, “
Bubble Forming on a Microline Heater
,”
Proceedings of the ASME Winter Annual Meeting, Dynamic Systems and Control Division
, Vol.
32
, pp.
147
163
.
9.
Iida
,
Y.
,
Okuyama
,
K.
, and
Sakurai
,
K.
, 1994, “
Boiling Nucleation on a Very Small Film Heater Subjected to Extremely Rapid Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
2771
2780
.
10.
Yin
,
Z.
,
Prosperetti
,
A.
, and
Kim
,
J.
, 2004, “
Bubble Growth on an Impulsively Powered Microheater
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1053
1067
.
11.
Kim
,
J.
,
Benton
,
J. F.
, and
Wisniewski
,
D.
, 2002, “
Pool Boiling Heat Transfer on Small Heaters: Effect of Gravity and Subcooling
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
19
), pp.
3919
3932
.
12.
Henry
,
C. D.
, and
Kim
,
J.
, 2004, “
A Study of the Effects of Heater Size, Subcooling, and Gravity Level on Pool Boiling Heat Transfer
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
262
273
.
13.
Raj
,
R.
,
Kim
,
J.
, and
McQuillen
,
J.
, 2010, “
Gravity Scaling Parameter for Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
132
(
9
), p.
091502
.
14.
Raj
,
R.
,
Kim
,
J.
, and
McQuillen
,
J.
, 2009, “
Subcooled Pool Boiling Under Variable Gravity Environments
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
091502
.
15.
Bakhru
,
N.
, and
Lienhard
,
J. H.
, 1972, “
Boiling From Small Cylinders
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
2011
2025
.
16.
Rule
,
T. D.
, and
Kim
,
J.
, 1999, “
Heat Transfer Behavior on Small Horizontal Heaters During Pool Boiling of FC-72
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
386
393
.
17.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. T.
, and
Lavine
,
A. S.
, 2007,
Fundamental of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
, p.
8
.
18.
Kim
,
J.
, 2003, “
Review of Reduced Gravity Boiling Heat Transfer: US Research
,”
J. Jpn. Soc. Microgravity Appl.
0915-3616,
20
(
4
), pp.
264
271
.
19.
Hsu
,
Y.
, 1962, “
An Analytical and Experimental Study of the Thermal Boundary Layer and the Ebullition Cycle in Nucleate Boiling
,”
NASA
Report No. TN-D-594.
20.
Straub
,
J.
, 2002, “
Origin and Effect of Thermocapillary Convection in Subcooled Boiling: Observations and Conclusions From Experiments Performed at Microgravity
,”
Ann. N.Y. Acad. Sci.
0077-8923,
974
, pp.
348
363
.
21.
Marek
,
R.
, and
Straub
,
J.
, 2001, “
The Origin of Thermocapillary Convection in Subcooled Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
619
632
.
22.
Barthes
,
M.
,
Reynard
,
C.
,
Santini
,
R.
, and
Tadrist
,
L.
, 2007, “
Non-Condensable Gas Influence on the Marangoni Convection During a Single Vapor Bubble Growth in a Subcooled Liquid
,”
EPL
0295-5075,
77
, pp.
14001
-p1–14001-
p5
.
23.
Henry
,
C. D.
,
Kim
,
J.
, and
McQuillen
,
J.
, 2006, “
Dissolved Gas Effects on Thermocapillary Convection During Subcooled Boiling in Reduced Gravity Environments
,”
Heat Mass Transfer
0947-7411,
42
, pp.
919
928
.
You do not currently have access to this content.