In this work, the analytical solution of a fundamental problem of heat conduction in anisotropic medium is derived. The steady-state temperature field in an anisotropic trimaterial subject to an arbitrary heat source is analyzed. “Trimaterial” denotes an infinite body composed of three dissimilar materials bonded along two parallel interfaces. The method of analytical continuation is applied across the two parallel interfaces in order to derive the trimaterial solution in a series form from the corresponding homogeneous solution. A variety of problems, e.g., bimaterial, a finite thin film on a semi-infinite substrate, and a finite strip, can be analyzed as special cases of the present study. The numerical results of the temperature distributions for some practical examples are provided in graphic form and discussed in details.

1.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
Oxford University Press
,
London
.
2.
Özisik
,
M. N.
, 1980,
Heat Conduction
,
Wiley
,
New York
.
3.
Tauchert
,
T. R.
, and
Akoz
,
A. Y.
, 1975, “
Stationary Temperature and Stress Fields in an Anisotropic Elastic Slab
,”
ASME J. Appl. Mech.
0021-8936,
42
, pp.
647
650
.
4.
Mulholland
,
G. P.
, and
Gupta
,
B. P.
, 1977, “
Heat Transfer in a Three-Dimensional Anisotropic Solid of Arbitrary Shape
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
135
137
.
5.
Chang
,
Y. P.
, 1977, “
Analytical Solution for Heat Conduction in Anisotropic Media in Infinite Semi-Infinite and Two-Place-Bounded Regions
,”
Int. J. Heat Mass Transfer
0017-9310,
20
, pp.
1019
1028
.
6.
Poon
,
K. C.
, 1979, “
Transformation of Heat Conduction Problems in Layered Composites From Anisotropic to Orthotropic
,”
Lett. Heat Mass Transfer
0094-4548,
6
, pp.
503
511
.
7.
Poon
,
K. C.
,
Tsou
,
R. C. H.
, and
Chang
,
Y. P.
, 1979, “
Solution of Anisotropic Problems of First Class by Coordinate-Transformation
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
340
345
.
8.
Zhang
,
X. Z.
, 1990, “
Steady-State Temperatures in an Anisotropic Strip
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
16
20
.
9.
Sharma
,
B.
, 1958, “
Thermal Stresses in Transversely Isotropic Semi-Infinite Elastic Solids
,”
ASME J. Appl. Mech.
0021-8936,
25
, pp.
86
88
.
10.
Yan
,
L.
,
Sheikh
,
A. H.
, and
Beck
,
J. V.
, 1993, “
Thermal Characteristics of Two-Layered Bodies With Embedded Thin-Film Heat Source
,”
J. Electron. Packag.
1043-7398,
115
, pp.
276
283
.
11.
Yang
,
B.
, and
Shi
,
H.
, 2009, “
A Thermal Stability Criterion for Heat Conduction in Multilayer Composite Solids
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
111304
.
12.
Jain
,
P. K.
,
Singh
,
S.
, and
Rizwan-uddin
, 2009, “
Analytical Solution to Transient Asymmetric Heat Conduction in a Multilayer Annulus
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
011304
.
13.
Shiah
,
Y. C.
,
Hwang
,
P. W.
, and
Yang
,
R. B.
, 2006, “
Heat Conduction in Multiply Adjoined Anisotropic Media With Embedded Point Heat Sources
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
207
214
.
14.
Hsieh
,
M. H.
, and
Ma
,
C. C.
, 2002, “
Analytical Investigations for Heat Conduction Problems in Anisotropic Thin-Layer Media With Embedded Heat Sources
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
4117
4132
.
15.
Ma
,
C. C.
, and
Chang
,
S. W.
, 2004, “
Analytical Exact Solutions of Heat Conduction Problems for Anisotropic Multi-Layered Media
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1643
1655
.
16.
Wu
,
C. H.
, 1984, “
Plane Anisotropic Thermoelasticity
,”
ASME J. Appl. Mech.
0021-8936,
51
, pp.
724
726
.
17.
Kattis
,
M. A.
,
Papanikos
,
P.
, and
Providas
,
E.
, 2004, “
Thermal Green’s Functions in Plane Anisotropic Bimaterials
,”
Acta Mech.
0001-5970,
173
, pp.
65
76
.
18.
Chao
,
C. K.
, and
Chen
,
F. M.
, 2004, “
Thermal Stresses in an Isotropic Trimaterial Interacted With a Pair of Point Heat Source and Heat Sink
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
6233
6247
.
You do not currently have access to this content.