The effective thermal conductivities of aqueous nanofluids containing surfactant-stabilized multiwalled carbon nanotubes were measured and compared with the predictions of effective medium theory (Nan, C.-W., et al., 1997, “Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance,” J. Appl. Phys., 81(10), pp. 6692–6699). Detailed characterization of nanotube morphology was carried out through electron microscopy, while the nanotube agglomeration state was monitored through optical microscopy and absorption measurements. An optimum surfactant-to-nanotube mass ratio was found for the particular surfactant, sodium dodecylbenzene sulfonate, which resulted in the greatest increase in thermal conductivity. Taking into consideration the volume-weighted aspect ratio of the nanotubes, the measured thermal conductivities of the suspensions were shown to be in good agreement with calculations for a reasonable choice of interfacial resistance on the particle/liquid interface. The effect of particle aspect ratio on the suspension’s thermal conductivity was further demonstrated and compared with theory by reducing the nanotube length through intense ultrasonication. The effect of particle aggregation on the thermal conductivity was also investigated by destabilizing previously stable suspensions with ethanol addition, which causes surfactant desorption and bundling of nanotubes. The measured thermal conductivities were correlated with absorption measurements and microscopic visualizations to show that particle aggregation decreases the thermal conductivity of the nanofluid by reducing the effective particle aspect ratio.

1.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
718
720
.
2.
Patel
,
H.
,
Das
,
S.
,
Sundararajan
,
T.
,
Sreekumaran
,
N. A.
,
George
,
B.
, and
Pradeep
,
T.
, 2003, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
0003-6951,
83
(
14
), pp.
2931
2933
.
3.
Yang
,
B.
, and
Han
,
Z. H.
, 2006, “
Temperature-Dependent Thermal Conductivity of Nanorod-Based Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
083111
.
4.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
, and
Ai
,
F.
, 2002, “
Thermal Conductivity of Suspension Containing SiC Particles
,”
J. Mater. Sci. Lett.
0261-8028,
21
, pp.
193
95
.
5.
Lee
,
S.
,
Choi
,
S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
280
289
.
6.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
7.
Yang
,
Y.
,
Grulke
,
E. A.
,
Zhang
,
Z. G.
, and
Wu
,
G.
, 2006, “
Thermal and Rheological Properties of Carbon Nanotube-in-Oil Dispersions
,”
J. Appl. Phys.
0021-8979,
99
, p.
114307
.
8.
Xie
,
H.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
, 2003, “
Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
0021-8979,
94
(
8
), pp.
4967
4971
.
9.
Chen
,
L.
, and
Xie
,
H.
, 2009, “
Silicon Oil Based Multiwalled Carbon Nanotubes Nanofluid With Optimized Thermal Conductivity Enhancement
,”
Colloids Surf., A
0927-7757,
352
, pp.
136
140
.
10.
Choi
,
T. E.
,
Maneshian
,
M. H.
,
Kang
,
B.
,
Chang
,
W. S.
,
Han
,
C. S.
, and
Poulikakos
,
D.
, 2009, “
Measurement of the Thermal Conductivity of a Water-Based Single-Wall Carbon Nanotube Colloidal Suspension With a Modified 3-ω Method
,”
Nanotechnology
0957-4484,
20
, p.
315706
.
11.
Glory
,
J.
,
Bonetti
,
M.
,
Helezen
,
M.
,
Mayne-L’Hermite
,
M.
, and
Reynaud
,
C.
, 2008, “
Thermal and Electrical Conductivities of Water-Based Nanofluids Prepared With Long Multiwalled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
103
, p.
094309
.
12.
Xie
,
H.
, and
Chen
,
L.
, 2009, “
Adjustable Thermal Conductivity in Carbon Nanotube Nanofluids
,”
Phys. Lett. A
0375-9601,
373
, pp.
1861
1864
.
13.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2005, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
025901
.
14.
Krishnamurthy
,
S.
,
Bhattacharya
,
P.
,
Phelan
,
P. E.
, and
Prasher
,
S. P.
, 2006, “
Enhanced Mass Transport in Nanofluids
,”
Nano Lett.
1530-6984,
6
, pp.
419
423
.
15.
Jang
,
S.
, and
Choi
,
S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4316
4318
.
16.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2004, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
1388-0764,
6
(
6
), pp.
577
588
.
17.
Evans
,
W.
,
Fish
,
J.
, and
Keblinski
,
P.
, 2006, “
Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity
,”
Appl. Phys. Lett.
0003-6951,
88
, p.
093116
.
18.
Vladkov
,
M.
, and
Barrat
,
J. L.
, 2006, “
Modeling Transient Absorption and Thermal Conductivity in a Simple Nanofluid
,”
Nano Lett.
1530-6984,
6
(
6
), pp.
1224
1228
.
19.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
, 2006, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)
,”
Nano Lett.
1530-6984,
6
, pp.
1529
1534
.
20.
Prasher
,
R.
,
Evans
,
W.
,
Meakin
,
P.
,
Fish
,
J.
,
Phelan
,
P.
, and
Keblinski
,
P.
, 2006, “
Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
, pp.
143119
.
21.
Wang
,
B. X.
,
Zhou
,
L. P.
, and
Peng
,
X. F.
, 2003, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Trans.
,
46
(
14
), pp.
2665
2672
.
22.
Xuan
,
Y. M.
,
Li
,
Q.
, and
Hu
,
W. F.
, 2003, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
0001-1541,
49
(
4
), pp.
1038
1043
.
23.
Lee
,
D.
,
Kim
,
J. W.
, and
Kim
,
B. G.
, 2006, “
A New Parameter to Control Heat Transport in Nanofluids: Surface Charge State of the Particle in Suspension
,”
J. Phys. Chem. B
1089-5647,
110
(
9
), pp.
4323
4328
.
24.
Hong
,
K. S.
,
Hong
,
T. K.
, and
Yang
,
H. S.
, 2006, “
Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
88
(
3
), pp.
031901
.
25.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanism of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
855
863
.
26.
Nan
,
C. -W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
, 1997, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
0021-8979,
81
, pp.
6692
6699
.
27.
Cherkasova
,
A. S.
, and
Shan
,
J. W.
, 2008, “
Particle Aspect-Ratio Effects on the Thermal Conductivity of Micro- and Nanoparticle Suspensions
,”
ASME J. Heat Transfer
0022-1481,
130
, pp.
082406
.
28.
Maxwell
,
J. C.
, 1954,
A Treatise on Electricity and Magnetism
,
Dover
,
New York
.
29.
Fricke
,
H.
, 1924, “
A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems
,”
Phys. Rev.
0096-8250,
24
(
5
), pp.
575
587
.
30.
Nan
,
C. -W.
,
Shi
,
Z.
, and
Lin
,
Y.
, 2003, “
A Simple Model for Thermal Conductivity of Carbon Nanotube-Based Composites
,”
Chem. Phys. Lett.
0009-2614,
375
(
5–6
), pp.
666
669
.
31.
Vadasz
,
J. J.
,
Govender
,
S.
, and
Vadasz
,
P.
, 2005, “
Heat Transfer Enhancement in Nano-Fluids Suspensions: Possible Mechanisms and Explanations
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
13
), pp.
2673
2683
.
32.
Li
,
C. -C.
, and
Chang
,
M. -H.
, 2004, “
Colloidal Stability of CuO Nanoparticles in Alkanes via Oleate Modifications
,”
Mater. Lett.
0167-577X,
58
, pp.
3903
3907
.
33.
Louge
,
M.
, and
Chen
,
X.
, 2008, “
Heat Transfer Enhancement in Suspensions of Agitated Solids. Part III: Thermophoretic Transport of Nanoparticles in the Diffusion Limit
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
21–22
), pp.
5130
5143
.
34.
Islam
,
M. F.
,
Rojas
,
E.
,
Bergey
,
D. M.
,
Johnson
,
A. T.
, and
Yodh
,
A. G.
, 2003, “
High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water
,”
Nano Lett.
1530-6984,
3
(
2
), pp.
269
273
.
35.
Tadros
,
T. F.
, 2005,
Applied Surfactants: Principles and Application
,
Wiley-VCH
,
New York
.
36.
Segota
,
S.
,
Heimer
,
S.
, and
Tezak
,
D.
, 2006, “
New Catanionic Mixtures of Dodecyldimethylammonium Bromide/Sodium Dodecylbenzenesulphonate/Water I. Surface Properties of Dispersed Particles
,”
Colloids Surf., A
0927-7757,
274
, pp.
91
99
.
37.
Kapitza
,
P. L.
, 1941, “
Heat Transfer and Superfluidity of Helium II
,”
Phys. Rev.
0096-8250,
60
, pp.
354
355
.
38.
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Keblinski
,
P.
, and
Cahill
,
D. G.
, 2004, “
Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites
,”
J. Appl. Phys.
0021-8979,
95
, pp.
8136
8144
.
39.
Huxtable
,
S.
,
Cahill
,
D.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nature Mater.
1476-1122,
2
, pp.
731
734
.
40.
Ge
,
Z.
,
Cahill
,
D.
, and
Braun
,
P.
, 2004, “
AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution
,”
J. Phys. Chem. B
1089-5647,
108
(
49
), pp.
18870
18875
.
41.
Plech
,
A.
,
Kotaidis
,
V.
,
Gresillon
,
S.
,
Dahmen
,
C.
, and
Von Plessen
,
G.
, 2004, “
Laser-Induced Heating and Melting of Gold Nanoparticles Studied by Time-Resolved X-Ray Scattering
,”
Phys. Rev. B
0163-1829,
70
, pp.
195423
.
42.
Wilson
,
M. W.
,
Hu
,
X.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
, 2002, “
Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids
,”
Phys. Rev. B
0163-1829,
66
, p.
224301
.
43.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2003, “
Two Regimes of Thermal Resistance at a Liquid-Solid Interface
,”
J. Chem. Phys.
0021-9606,
118
(
1
), pp.
337
339
.
44.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
Mceuen
,
P. L.
, 2001, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
87
(
21
), p.
215502
.
45.
Small
,
J. P.
,
Shi
,
L.
, and
Kim
,
P.
, 2003, “
Mesoscopic Thermal and Thermoelectric Measurements of Individual Carbon Nanotubes
,”
Solid State Commun.
0038-1098,
127
, pp.
181
186
.
46.
Prasher
,
R.
, 2008, “
Thermal Boundary Resistance and Thermal Conductivity of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
77
, p.
075424
.
47.
Li
,
Q.
,
Liu
,
C.
,
Wang
,
X.
, and
Fan
,
S.
, 2009, “
Measuring the Thermal Conductivity of Individual Carbon Nanotubes by the Raman Shift Method
,”
Nanotechnology
0957-4484,
20
, p.
145702
.
48.
Fujii
,
M.
,
Zhang
,
X.
, and
Takahashi
,
K.
, 2006, “
Measurements of Thermal Conductivity of Individual Carbon Nanotubes
,”
Phys. Status Solidi B
0370-1972,
243
(
13
), pp.
3385
3389
.
49.
Choi
,
T. -Y.
,
Poulikakos
,
D.
,
Tharian
,
J.
, and
Sennhauser
,
U.
, 2005, “
Measurement of Thermal Conductivity of Individual Multiwalled Carbon Nanotubes by the 3-Method
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
013108
.
50.
Choi
,
T. -Y.
,
Poulikakos
,
D.
,
Tharian
,
J.
, and
Sennhauser
,
U.
, 2006, “
Measurement of the Thermal Conductivity of Individual Carbon Nanotubes by the Four-Point Three-ω Method
,”
Nano Lett.
1530-6984,
6
, pp.
1589
1593
.
51.
Shioya
,
H.
,
Iwai
,
T.
,
Kondo
,
D.
,
Nihei
,
M.
, and
Awano
,
Y.
, 2007, “
Evaluation of Thermal Conductivity of a Multi-Walled Carbon Nanotube Using the Delta V-Gs Method
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
46
(
5A
), pp.
3139
3143
.
52.
Yang
,
D. J.
,
Wang
,
S. G.
,
Zhang
,
Q.
,
Sellin
,
P. J.
, and
Chen
,
G.
, 2004, “
Thermal and Electrical Transport in Multi-Walled Carbon Nanotubes
,”
Phys. Lett. A
0375-9601,
329
(
3
), pp.
207
213
.
53.
Che
,
J.
,
Cagun
,
T.
, and
Goddard
,
W. A. I.
, 2000, “
Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
0957-4484,
11
, pp.
65
69
.
54.
Kwak
,
K.
, and
Kim
,
C.
, 2005, “
Viscosity and Thermal Conductivity of Copper Oxide Nanofluid Dispersed in Ethylene Glycol
,”
Korea-Aust. Rheol. J.
1226-119X,
17
(
2
), pp.
35
40
.
55.
Larson
,
R. G.
, 1999,
The Structure and Rheology of Complex Fluids
,
Oxford University Press
,
New York
.
56.
Abels
,
J. A.
,
Moreno-Herrero
,
F.
,
Van Der Heijden
,
T.
,
Dekker
,
C.
, and
Dekker
,
N. H.
, 2005, “
Singlemolecule Measurements of the Persistence Length of Double-Stranded RNA
,”
Biophys. J.
0006-3495,
88
, pp.
2737
2744
.
57.
Lee
,
H. S.
, and
Yun
,
C. H.
, 2008, “
Translational and Rotational Diffusions of Multiwalled Carbon Nanotubes With Static Bending
,”
J. Phys. Chem. C
1932-7447,
112
, pp.
10653
10658
.
58.
Arroyo
,
M.
, and
Belytschko
,
T.
, 2003, “
A Finite Deformation Membrane Based on Inter-Atomic Potentials for the Transverse Mechanics of Nanotubes
,”
Mech. Mater.
0167-6636,
35
(
3–6
), pp.
193
215
.
59.
Deng
,
F.
,
Zheng
,
Q. S.
, and
Wang
,
L. F.
, 2007, “
Effects of Anisotropy, Aspect Ratio, and Nonstraightness of Carbon Nanotubes on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
021914
.
60.
Wang
,
S.
,
Liang
,
R.
,
Wan
,
B.
, and
Zhang
,
C.
, 2009, “
Dispersion and Thermal Conductivity of Carbon Nanotube Composites
,”
Carbon
0008-6223,
47
, pp.
53
57
.
61.
Zhang
,
M.
,
Yudasaka
,
M.
,
Koshio
,
A.
,
Jabs
,
C.
,
Ichihashi
,
T.
, and
Iijima
,
S.
, 2002, “
Structure of Single Wall Carbon Nanotubes Purified and Cut Using Polymer
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
74
, pp.
7
10
.
62.
Zhang
,
Z. -B.
,
Cardenas
,
J.
,
Campbell
,
E. E. B.
, and
Zhang
,
S. -L.
, 2005, “
Reversible Surface Functionalization of Carbon Nanotubes for Fabrication of Field-Effect Transistors
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
043110
.
63.
Eda
,
G.
,
Fanchini
,
G.
,
Kanwal
,
A.
, and
Chhowalla
,
M.
, 2008, “
Bundling Dynamics of Single Walled Carbon Nanotubes in Aqueous Suspensions
,”
J. Appl. Phys.
0021-8979,
103
(
9
), p.
093118
.
64.
Ingle
,
J. D. J.
and
Crouch
,
S. R.
, 1988,
Spectrochemical Analysis
,
Prentice-Hall
,
Upper Saddle River, NJ
.
65.
Mason
,
M.
, and
Weaver
,
W.
, 1924, “
The Settling of Small Particles in a Fluid
,”
Phys. Rev.
0096-8250,
23
, pp.
412
426
.
You do not currently have access to this content.