Ultrashort-pulsed laser irradiation on semiconductors creates a thermal nonequilibrium between carriers and phonons. Previous computational studies used the “two-temperature” model and its variants to model this nonequilibrium. However, when the laser pulse duration is smaller than the relaxation time of the carriers or phonons or when the carriers’ or phonons’ mean free path is larger than the material dimension, these macroscopic models fail to capture the physics accurately. In this article, the nonequilibrium between carriers and phonons in silicon films is modeled via numerical solution of the Boltzmann transport model (BTM), which is applicable over a wide range of length and time scales. The BTM is solved using the discontinuous Galerkin finite element method for spatial discretization and the three-stage Runge–Kutta temporal discretization. The BTM results are compared with previous computational studies on laser heating of macroscale silicon films. The model is then used to study laser heating of nanometer size silicon films, by varying parameters such as the laser fluence and pulse duration. From the laser pulse duration study, it is observed that the peak carrier number density, and maximum carrier and phonon temperatures are the highest for the shortest pulse duration of 0.05 ps and decreases with increasing pulse duration. From the laser fluence study, it is observed that for fluences equal to or higher than 1000J/m2, due to the Auger recombination, a second peak in carrier temperature is observed. The use of carrier-acoustic phonon coupling leads to equilibrium phonon temperatures, which are approximately 400 K higher than that of carrier-optical phonon-acoustic phonon coupling. Both the laser pulse duration and fluence are found to strongly affect the equilibrium time and temperature in Si films.

1.
Chlipala
,
J. D.
,
Scarforne
,
L. M.
, and
Lu
,
C. Y.
, 1989, “
Computer-Simulated Explosion of Poly-Silicide Links in Laser-Programmable Redundancy for VLSI Memory Repair
,”
IEEE Trans. Electron Devices
0018-9383,
36
, pp.
2433
2439
.
2.
Simon
,
R.
, 1991, “
High-Tc Thin Films and Electronic Devices
,”
Phys. Today
0031-9228,
44
, pp.
64
70
.
3.
Narayan
,
J.
,
Godbole
,
V. P.
, and
White
,
G. W.
, 1991, “
Laser Method for Synthesis and Processing of Continuous Diamond Films on Nondiamond Substrates
,”
Science
0036-8075,
252
, pp.
416
418
.
4.
Kumar
,
A. V.
,
Bansal
,
S. K.
, and
Srivastava
,
G. P.
, 1996, “
Laser Induced Damage in GaAs at 1.06 mm Wavelength: Surface Effects
,”
Opt. Laser Technol.
0030-3992,
28
, pp.
25
34
.
5.
Phinney
,
L. M.
, and
Tien
,
C. L.
, 1998, “
Electronic Desorption of Surface Species Using Short-Pulse Lasers
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
765
771
.
6.
Fushinobu
,
K.
,
Phinney
,
L. M.
,
Kurosaki
,
Y.
, and
Tien
,
C. L.
, 1999, “
Optimization of Laser Parameters for Ultrashort-Pulse Laser Recovery of Stiction-Failed Microstructures
,”
Numer. Heat Transfer, Part A
1040-7782,
36
, pp.
345
357
.
7.
Shank
,
C.
,
Yen
,
R.
, and
Hirlimann
,
C.
, 1983, “
Time-Resolved Reflectivity Measurements of Femtosecond-Optical Pulse-Induced Phase Transitions in Silicon
,”
Phys. Rev. Lett.
0031-9007,
50
, pp.
454
457
.
8.
Govorkov
,
S.
,
Schroeder
,
T.
,
Shumay
,
I.
, and
Heist
,
P.
, 1992, “
Transient Gratings and Second-Harmonic Probing of the Phase Transformation of a GaAs Surface Under Femtosecond Laser Irradiation
,”
Phys. Rev. B
0163-1829,
46
, pp.
6864
6868
.
9.
Sokolowski-Tinten
,
K.
, and
von der Linde
,
D.
, 2000, “
Generation of Dense Electron-Hole Plasmas in Silicon
,”
Phys. Rev. B
0163-1829,
61
, pp.
2643
2650
.
10.
Van Vechten
,
J. A.
,
Tsu
,
R.
, and
Saris
,
F. W.
, 1979, “
Nonthermal Pulsed Laser Annealing of Si: Plasma Annealing
,”
Phys. Lett. A
0375-9601,
74
, pp.
422
426
.
11.
van Driel
,
H. M.
, 1987, “
Kinetics of High-Density Plasmas Generated in Si by 1.06- and 0.53-μm Picosecond Laser Pulses
,”
Phys. Rev. B
0163-1829,
35
, pp.
8166
8176
.
12.
Tien
,
C.
,
Majumdar
,
A.
, and
Gerner
,
F.
, 1997,
Microscale Energy Transport
,
Taylor & Francis
,
New York
.
13.
Lee
,
S. -H.
,
Lee
,
J. -S.
,
Park
,
S.
, and
Choi
,
Y. -K.
, 2003, “
Numerical Analysis on Heat Transfer Characteristics of a Silicon Film Irradiated by Pico- to Femtosecond Pulse Lasers
,”
Numer. Heat Transfer, Part A
1040-7782,
44
, pp.
833
850
.
14.
Chen
,
J. K.
,
Tzou
,
D.
, and
Beraun
,
J. E.
, 2005, “
Numerical Investigation of Ultrashort Laser Damage in Semiconductors
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
501
509
.
15.
Meyer
,
J. R.
,
Kruer
,
M. R.
, and
Bartoli
,
F. J.
, 1980, “
Optical Heating in Semiconductors: Laser Damage in Ge, Si, InSb, and GaAs
,”
J. Appl. Phys.
0021-8979,
51
, pp.
5513
5522
.
16.
Agassi
,
D.
, 1984, “
Phenomenological Model for Picosecond Pulse Laser Annealing of Semiconductors
,”
J. Appl. Phys.
0021-8979,
55
, pp.
4376
4383
.
17.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
835
841
.
18.
Pattamatta
,
A.
, and
Madnia
,
C. K.
, 2009, “
A Comparative Study of Two-Temperature and Boltzmann Transport Models for Electron-Phonon Non-Equilibrium
,”
Numer. Heat Transfer, Part A
1040-7782,
55
, pp.
611
633
.
19.
Chen
,
G.
,
Borca-Tasciuc
,
D.
, and
Yang
,
R.
, 2004, “
Nanoscale Heat Transfer
,”
Encyclopedia of Nanoscience and Nanotechnology
, Vol.
17
,
H. S.
Nalwa
, ed.,
American Scientific Publishers
, pp.
429
459
.
20.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
, 1976,
Solid State Physics
,
Holt, Rinehart and Winston
,
New York
.
21.
Joshi
,
A.
, and
Majumdar
,
A.
, 1993, “
Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films
,”
J. Appl. Phys.
0021-8979,
74
, pp.
31
39
.
22.
Ziman
,
J. M.
, 1960,
Electrons and Phonons
,
Oxford University Press
,
London, UK
.
23.
Pattamatta
,
A.
, and
Madnia
,
C. K.
, 2009, “
Modeling Electron-Phonon Non-Equilibrium in Gold Films Using Boltzmann Transport Model
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
082401
.
24.
Majumdar
,
A.
,
Fushinobu
,
K.
, and
Hijikata
,
K.
, 1995, “
Effect of Gate Voltage on Hot-Electron and Hot-Phonon Interaction and Transport in a Submicrometer Transistor
,”
J. Appl. Phys.
0021-8979,
77
, pp.
6686
6694
.
25.
Chen
,
G.
, 1997, “
Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
220
229
.
26.
Pattamatta
,
A.
, and
Madnia
,
C. K.
, 2009, “
Modeling Heat Transfer in Bi2Te3–Sb2Te3 Nanostructures
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
860
869
.
27.
Cockburn
,
B.
,
Karniadakis
,
G. E.
, and
Shu
,
C. -W.
, 2000,
Discontinuous Galerkin Methods: Theory, Computation and Applications
,
Springer-Verlag
,
Berlin
.
28.
Cockburn
,
B.
, and
Shu
,
C. -W.
, 2001, “
Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems
,”
J. Sci. Comput.
0885-7474,
16
(
3
), pp.
173
261
.
29.
Cui
,
X.
, and
Li
,
B. Q.
, 2004, “
A Discontinuous Finite-Element Formulation for Internal Radiation Problems
,”
Numer. Heat Transfer, Part B
1040-7790,
46
, pp.
223
242
.
30.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
, 1994, “
Finite Volume Method for Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
0887-8722,
8
(
3
), pp.
419
425
.
31.
Pierret
,
R. F.
, 2003,
Advanced Semiconductor Fundamentals: Modular Series on Solid State Devices
, Vol.
VI
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
32.
Pronko
,
P.
,
VanRompay
,
P.
,
Horvath
,
C.
,
Loesel
,
F.
,
Juhasz
,
T.
,
Liu
,
X.
, and
Mourou
,
G.
, 1998, “
Avalanche Ionization and Dielectric Breakdown in Silicon With Ultrafast Laser Pulse
,”
Phys. Rev. B
0163-1829,
58
, pp.
2387
2390
.
33.
Allenspacher
,
P.
,
Huttner
,
B.
, and
Riede
,
W.
, 2003, “
Ultrashort Pulse Damage of Si and Ge Semiconductors
,”
Proc. SPIE
0277-786X,
4932
, pp.
358
365
.
34.
Madelung
,
O.
, 2004,
Semiconductors:Data Handbook
, 3rd ed.,
Springer
,
New York
.
You do not currently have access to this content.