A one-dimensional, steady-state model of a triangular microheat pipe (MHP) is developed, with the main purpose of investigating the thermal effects of the solid wall on the heat transport capacity of an MHP. The energy equation of the solid wall is solved analytically to obtain the axial temperature distribution, the average of which over the entire length of the MHP is simply its operating temperature. Next, the liquid phase is coupled with the solid wall by a heat transfer coefficient. Then, the continuity, momentum, and energy equations of the liquid and vapor phases are, together with the Young–Laplace equation, solved numerically to yield the heat and fluid flow characteristics of the MHP. The heat transport capacity and the associated optimal charge level of the working fluid are predicted for different operating conditions. Comparison between the models with and without a solid wall reveals that the presence of the solid wall induces a change in the phase change heat transport by the working fluid, besides facilitating axial heat conduction in the solid wall. The analysis also highlights the effects of the thickness and thermal conductivity of the solid wall on its axial temperature distribution. Finally, while the contribution of the thermal effects of the solid wall on the heat transport capacity of the MHP is usually not dominant, it is, nevertheless, not negligible either.

1.
Cotter
,
T. P.
, 1984, “
Principles and Prospects for Micro Heat Pipes
,”
Proceedings of the Fifth International Heat Pipe Conference
, Tsukuba, Japan, pp.
328
335
.
2.
Peterson
,
G. P.
, 1992, “
Overview of Micro Heat Pipe Research and Development
,”
Appl. Mech. Rev.
0003-6900,
45
, pp.
175
189
.
3.
Peterson
,
G. P.
, 1996, “
Modeling, Fabrication, and Testing of Micro Heat Pipes
,”
Appl. Mech. Rev.
0003-6900,
49
, pp.
S175
S183
.
4.
Groll
,
M.
,
Schneider
,
M.
,
Sartre
,
V.
,
Zaghdoudi
,
M. C.
, and
Lallemand
,
M.
, 1998, “
Thermal Control of Electronic Equipment by Heat Pipes
,”
Rev. Gen. Therm.
0035-3159,
37
, pp.
323
352
.
5.
Sobhan
,
C. B.
,
Rag
,
L. R.
, and
Peterson
,
G. P.
, 2007, “
A Review and Comparative Study of the Investigations on Micro Heat Pipes
,”
Int. J. Energy Res.
0363-907X,
31
, pp.
664
688
.
6.
Suman
,
B.
, 2007, “
Modeling, Experiment, and Fabrication of Micro-Grooved Heat Pipes: An Update
,”
Appl. Mech. Rev.
0003-6900,
60
, pp.
107
119
.
7.
Tio
,
K. -K.
,
Liu
,
C. Y.
, and
Toh
,
K. C.
, 2000, “
Thermal Analysis of Micro Heat Pipes Using a Porous-Medium Model
,”
Heat Mass Transfer
0947-7411,
36
, pp.
21
28
.
8.
Sugumar
,
D.
, and
Tio
,
K. -K.
, 2006, “
Thermal Analysis of Inclined Micro Heat Pipes
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
198
202
.
9.
Sugumar
,
D.
, and
Tio
,
K. -K.
, 2009, “
The Effects of Working Fluid on the Heat Transport Capacity of a Microheat Pipe
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
012401
.
10.
Kim
,
S. J.
,
Seo
,
J. K.
, and
Do
,
K. H.
, 2003, “
Analytical and Experimental Investigation on the Operational Characteristics and the Thermal Optimization of a Miniature Heat Pipe With a Grooved Wick Structure
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2051
2063
.
11.
Suman
,
B.
, and
Hoda
,
N.
, 2005, “
Effect of Variations in Thermophysical Properties and Design Parameters on the Performance of a V-Shaped Micro Grooved Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2090
2101
.
12.
Do
,
K. H.
,
Kim
,
S. J.
, and
Garimella
,
S. V.
, 2008, “
A Mathematical Model for Analyzing the Thermal Characteristics of a Flat Micro Heat Pipe with a Grooved Wick
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4637
4650
.
13.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
, 2004, “
Mini- and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3993
4004
.
14.
Babin
,
B. R.
,
Peterson
,
G. P.
, and
Wu
,
D.
, 1990, “
Steady-State Modeling and Testing of a Micro Heat Pipe
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
595
601
.
15.
Bejan
,
A.
, 2004,
Convection Heat Transfer
,
Wiley
,
Hoboken, NJ
, Chap. 3.
16.
Longtin
,
J. P.
,
Badran
,
B.
, and
Gerner
,
F. M.
, 1994, “
A One-Dimensional Model of a Micro Heat Pipe During Steady-State Operation
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
709
715
.
17.
Dunn
,
P. D.
, and
Reay
,
D. A.
, 1994,
Heat Pipes
,
Pergamon
,
New York
.
18.
Perry
,
R. H.
, and
Green
,
D. W.
, 1997,
Perry's Chemical Engineers' Handbook
,
McGraw-Hill
,
New York
.
19.
Sugumar
,
D.
, 2002, “
Thermal Analysis of Micro Heat Pipes: Effects of Geometry, Type of Working Fluid, and Gravity
,” MS thesis, Multimedia University, Malaysia.
20.
de Gennes
,
P. G.
, 1985, “
Wetting: Statics and Dynamics
,”
Rev. Mod. Phys.
0034-6861,
57
, pp.
827
863
.
21.
Lin
,
L.
,
Ponnappan
,
R.
, and
Leland
,
J.
, 2002, “
High Performance Miniature Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3131
3142
.
22.
Vadakkan
,
U.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
, 2004, “
Transport in Flat Heat Pipes at High Heat Fluxes from Multiple Discrete Sources
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
347
354
.
You do not currently have access to this content.