Microtubular solid oxide fuel cells (MT-SOFCs) are interesting for portable and auxiliary power units energy production systems, due to their extremely fast startup time. However, a single cell provides power in the range of 1 W, thus the number of microtubes to reach a kW scale is relevant and packaging design issues arise also. In this paper a specifically developed design procedure is presented to face with system issues and bringing into account fluid-dynamic and thermal influence on system performance. The procedure also simplifies the stack manifold design by means of a modular scale-up procedure starting from a basic optimized configuration. To this aim, a computational fluid dynamics (CFD) model has been integrated with specific models for fuel cell simulation and then validated with tailored experimental data by varying operating conditions in terms of fuel utilization and electric load. A comprehensive three–dimensional (3D) thermal-fluid-dynamic model has then been applied to the analysis of both micro-assembly (i.e., 15 tube assembly) and midi-assembly (up to 45 tubes), showing an important role of local phenomena as current homogeneity and reactant local concentration that have a strong influence on power density and temperature distribution. Microreactor power density in the range of 0.3 kW/l have been demonstrated and a specific manifold design has been realized paving the way toward a modular realization of a 1 kW MT-SOFC.

1.
Singhal
,
S. C.
, 2000, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
0167-2738,
135
, pp.
305
313
.
2.
Wincewicz
,
K. C.
, and
Cooper
,
J. S.
, 2005, “
Taxonomies of SOFC Material and Manufacturing Alternatives
,”
J. Power Sources
0378-7753,
140
, pp.
280
296
.
3.
Van herle
,
J.
,
Ihringer
,
R.
,
Sammes
,
N. M.
,
Tompsett
,
G.
,
Kendall
,
K.
,
Yamada
,
K.
,
Wen
,
C.
,
Kawada
,
T.
,
Ihara
,
M.
, and
Mizusaki
,
J.
, 2000, “
Concept and Technology of SOFC for Electric Vehicles
,”
Solid State Ionics
0167-2738,
132
, pp.
333
342
.
4.
Yuan
,
J.
, and
Sundén
,
B.
, 2005, “
Analysis of Intermediate Temperature Solid Oxide Fuel Cells Transport Processes and Performance
,”
ASME J. Heat Transfer
0022-1481,
127
(
12
), pp.
1380
1390
.
5.
Minh
,
N. Q.
, 2004, “
Solid Oxide Fuel Cell Technology—Features and Applications
,”
Solid State Ionics
0167-2738,
174
, pp.
271
277
.
6.
Alston
,
T.
,
Kendall
,
K.
,
Palin
,
M.
,
Prica
,
M.
, and
Windibank
,
P.
, 1998, “
A 1000-Cell SOFC Reactor for Domestic Cogeneration
,”
J. Power Sources
0378-7753,
71
, pp.
271
274
.
7.
Du
,
Y.
,
Finnerty
,
C.
, and
Jiang
,
J.
, 2008, “
Thermal Stability of Portable Microtubular SOFCs and Stacks
,”
J. Electrochem. Soc.
0013-4651,
155
, pp.
B972
B977
.
8.
Kendall
K.
, 2009, “
Progress in Microtubular Solid Oxide Fuel Cells
,”
Int. J. Appl. Ceram. Technol.
1546-542X, in press.
9.
Lawlor
,
V.
,
Griesser
,
S.
,
Buchinger
,
G.
,
Olabi
,
A. G.
,
Cordiner
,
S.
, and
Meissner
,
D.
, 2009, “
Review of the Micro-Tubular Solid Oxide Fuel Cell: Part I. Stack Design Issues and Research Activities
,”
J. Power Sources
0378-7753,
193
, pp.
387
399
.
10.
Funahashi
,
Y.
,
Shinamori
,
T.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2007, “
Fabrication and Characterization of Components for Cube Shaped Micro Tubular SOFC Bundle
,”
J. Power Sources
0378-7753,
163
, pp.
731
736
.
11.
Sammes
,
N. M.
,
Du
,
Y.
, and
Bove
,
R.
, 2005, “
Design and Fabrication of a 100 W Anode Supported Micro-Tubular SOFC Stack
,”
J. Power Sources
0378-7753,
145
, pp.
428
434
.
12.
Autissier
,
N.
,
Larrain
,
D.
,
Van Herle
,
J.
, and
Favrat
,
D.
, 2004, “
CFD Simulation Tool for Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
131
, pp.
313
319
.
13.
Ferguson
,
J. R.
,
Fiard
,
J. M.
, and
Herbin
,
R.
, 1996, “
Three-Dimensional Numerical Simulation for Various Geometries of Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
58
, pp.
109
122
.
14.
Li
,
P. W.
, and
Schaefer
,
L.
, and
Chyu
,
M. K.
,2004, “
A Numerical Model Coupling the Heat and Gas Species’ Transport Processes in a Tubular SOFC
,”
ASME J. Heat Transfer
0022-1481,
126
(
2
), pp.
219
229
.
15.
Kakac
,
S.
,
Pramuanjaroenkij
,
A.
, and
Zhou
,
X. Y.
, 2007, “
A Review of Numerical Modelling of Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
32
(
7
), pp.
761
786
.
16.
R.
Bove
and
S.
Ubertini
, eds., 2008,
Modeling Solid Oxide Fuel Cells, Methods, Procedures and Techniques
,
Springer
,
New York
.
17.
Van herle
,
J.
,
Larrain
,
D.
,
Autissier
,
N.
,
Wuillemin
,
Z.
,
Molinelli
,
M.
, and
Favrat
,
D.
, 2005, “
Modeling and Experimental Validation of SOFC Materials and Stacks
,”
J. Eur. Ceram. Soc.
0955-2219,
25
, pp.
2627
2632
.
18.
Recknagle
,
K. P.
,
Williford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
, 2003, “
Three Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,”
J. Power Sources
0378-7753,
113
, pp.
109
114
.
19.
Kapadia
,
S.
, and
Anderson
,
W. K.
, 2009, “
Sensitivity Analysis for Solid Oxide Fuel Cells Using a Three-Dimensional Numerical Model
,”
J. Power Sources
0378-7753,
189
(
2
), pp.
1074
1082
.
20.
Li
,
P. W.
, and
Chyu
,
M. K.
, 2005, “
Electrochemical and Transport Phenomena in Solid Oxide Fuel Cells
,”
ASME J. Heat Transfer
0022-1481,
127
(
12
), pp.
1344
1362
.
21.
Janardhanan
,
V. M.
, and
Deutschmann
,
O.
, 2007, “
Numerical Study of Mass and Heat Transport in Solid-Oxide Fuel Cells Running on Humidified Methane
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
5473
5486
.
22.
Ozgur Colpan
,
C.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
, 2008, “
Transient Modeling of Direct Internal Reforming Planar Solid Oxide Fuel Cells
,” ASME Paper No. GT2008-56425.
23.
Nakajo
,
A.
,
Wullemin
,
Z.
,
Van Herle
,
J.
, and
Favrat
,
D.
, 2009, “
Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part II: Loss of Gas-Tightness, Electrical Contact and Thermal Buckling
,”
J. Power Sources
0378-7753,
193
, pp.
216
226
.
24.
Lockett
,
M.
,
Simmons
,
M. J. H.
, and
Kendall
,
K.
, 2004, “
CFD to Predict Temperature Profile for Scale Up of Micro-Tubular SOFC Stacks
,”
J. Power Sources
0378-7753,
131
, pp.
243
246
.
25.
Lee
,
S. -B.
,
Lim
,
T. H.
,
Song
,
R. H.
,
Shin
,
D. -R.
, and
Dong
,
S. -K.
, 2008, “
Development of a 700 W Anode-Supported Micro-Tubular SOFC Stack for APU Applications
,”
Int. J. Hydrogen Energy
0360-3199,
33
, pp.
2330
2336
.
26.
Cui
,
D.
, and
Cheng
,
M.
, 2009 “
Numerical Analysis of Thermal and Electrochemical Phenomena for Anode Supported Microtubular SOFC
,”
AIChE J.
0001-1541,
55
(
3
), pp.
771
782
.
27.
Cui
,
D.
, and
Cheng
,
M.
, 2009, “
Thermal Stress Modeling of Anode Supported Micro-Tubular Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
192
, pp.
400
407
.
28.
Serincan
,
M. F.
,
Pasaogullari
,
U.
, and
Sammes
,
N. M.
, 2008, “
Computational Thermal Fluid Analysis of Micro-Tubular Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
155
, pp.
B1117
B1127
.
29.
Claassen
,
P.
,
Grimschitz
,
G.
,
Kuehn
,
S.
,
Mariani
,
A.
,
De Simone
,
G.
,
Wancura
,
H.
,
Buchinger
,
G.
,
Meissner
,
D.
, and
Raab
,
T.
, 2006,
Integrated SOFC Systems Based on Microtubular Cells—Reaching the kW-Stage
,
Fuel Cell Seminar
, Honolulu.
30.
Selimovic
,
A.
,
Kemm
,
M.
,
Torisson
,
T.
, and
Assadi
,
M.
, 2005, “
Steady State and Transient Thermal Stress Analysis in Planar Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
145
, pp.
463
469
.
31.
Dikwal
,
C. M.
,
Bujalski
,
W.
, and
Kendall
,
K.
, 2009, “
The Effect of Temperature Gradients on Thermal Cycling and Isothermal Ageing of Micro-Tubular Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
193
, pp.
241
248
.
32.
Fluent Inc.
, 2003,
Fluent User’s Guide, Version 6.1
,
Fluent Inc.
,
Lebanon, NH
.
33.
Cordiner
,
S.
,
Feola
,
M.
,
Mulone
,
V.
, and
Romanelli
,
F.
, 2007, “
Analysis of a SOFC Energy Generation System Fuelled With Biomass Reformate
,”
Appl. Therm. Eng.
1359-4311,
27
(
4
), pp.
738
747
.
34.
Zhang
,
X.
,
Li
,
G.
,
Li
,
J.
, and
Feng
,
Z.
, 2007, “
Numerical Study on Electric Characteristics of SOFC
,”
Energy Convers. Manage.
0196-8904,
48
, pp.
977
989
.
35.
Sleiti
,
A. K.
, 2008, “
Effect of Reduced Temperature and Cathode Porosity on the Performance of Tubular Solid Oxide Fuel Cell
,” ASME Paper No. GT2008-56447.
36.
Hawkes
,
G.
, and
Jones
,
R.
, 2007, “
CFD Model of a Planar Solid Oxide Electrolysis Cell: Base Case and Variations
,” ASME Paper No. GT2007-32310.
37.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2003, “
Computational Fluid Dynamics Modelling of Solid Oxide Fuel Cells
,”
Proceedings of the SOFC-VIII.
, Vol.
7
, Paris, France, pp.
1403
1412
.
38.
Mandin
,
P.
,
Bernay
,
C.
,
Tran-Dac
,
S.
,
Broto
,
A.
,
Abes
,
D.
, and
Cassir
,
M.
, 2006, “
SOFC Modelling and Numerical Simulation of Performances
,”
Fuel Cells
0532-7822,
6
(
1
), pp.
71
78
.
39.
Hawkes
,
G. L.
,
O’Brien
,
J. E.
,
Martinez Baca
,
C.
,
Travis
,
R. P.
,
Haberman
,
B. A.
,
Marquis
,
A. J.
,
Costamagna
,
P.
, and
Tripepi
,
D.
, 2008, “
Numerical Prediction of the Performance of Integrated Planar Solid-Oxide Fuel Cells With Comparisons of Results From Several Codes
,”
Proceedings of the Sixth International Conference on Fuel Cell Science, Engineering and Technology
, Denver, Jun. 16–18.
40.
Zhu
,
H.
, and
Kee
,
R. J.
, 2007, “
The Influence of Current Collection on the Performance of Tubular Anode-Supported SOFC Cells
,”
J. Power Sources
0378-7753,
169
, pp.
315
326
.
41.
Manca
,
O.
, and
Nardini
,
S.
, 2009, “
Experimental Investigation of Radiation Effects on Natural Convection in Horizontal Channels Heated From Above
,”
ASME J. Heat Transfer
0022-1481,
131
(
6
), p.
062503
.
42.
Beale
,
S. B.
, 2005,
Transport Phenomena in Fuel Cells
,
B.
Sunden
and
M.
Faghri
, eds.,
MIT
,
Cambridge, MA
, pp.
43
82
.
43.
Van der Steen
,
J. D. J.
, and
Pharoah
,
J. G.
, 2004, “
The Effect of Radiation Heat Transfer in Solid Oxide Fuel Cell Modelling
,”
Combustion Institute/Canadian Section, Spring Technical Meeting
, Queen’s University, May 9–12.
44.
Daun
,
K. J.
,
Beale
,
S. B.
,
Liu
,
F.
, and
Smallwood
,
G. J.
, 2006, “
Radiation Heat Transfer in Planar SOFC Electrolytes
,”
J. Power Sources
0378-7753,
157
, pp.
302
310
.
45.
Tanaka
,
T.
,
Inui
,
Y.
,
Urata
,
A.
, and
Kanno
,
T.
, 2007, “
Three Dimensional Analysis of Planar Solid Oxide Fuel Cell Stack Considering Radiation
,”
Energy Convers. Manage.
0196-8904,
48
, pp.
1491
1498
.
46.
Burt
,
A. C.
,
Celik
,
I. B.
,
Gemmen
,
R. S.
, and
Smirnov
,
A. V.
, 2004, “
A Numerical Study of Cell-to-Cell Variations in a SOFC
,”
J. Power Sources
0378-7753,
126
, pp.
76
87
.
47.
Singhal
,
S. C.
, and
Kendall
,
K.
, 2004,
High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
,
New York
.
48.
Grew
,
K. N.
,
Joshi
,
A. S.
, and
Peracchio
,
A. A.
, 2007, “
Characterization and Quantification of Charge and Heat Transfer in a Solid Oxide Fuel Cell Anode
,” ASME Paper No. GT2007-32452.
49.
Chan
,
S. H.
,
Chen
,
X. J.
, and
Khor
,
K. A.
, 2002, “
An Electrolyte Model for Ceramic Oxygen Generator and Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
111
, pp.
320
328
.
50.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
, 2nd ed.,
Wiley
,
New York
.
51.
Wang
,
C. Y.
, 2004, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
, pp.
4727
4766
.
52.
Yakabe
,
H.
,
Ogiwara
,
T.
,
Hishimuma
,
M.
, and
Yasuda
,
I.
, 2001, “
3D Model Calculation for Planar SOFC
,”
J. Power Sources
0378-7753,
102
, pp.
144
154
.
53.
Hernandez-Pacheco
,
E.
,
Mann
,
M. D.
,
Hutton
,
P. N.
,
Singh
,
D.
, and
Martin
,
K. E.
, 2005, “
A Cell-Level Model for a Solid Oxide Fuel Cell Operated With Syngas From a Gasification Process
,”
Int. J. Hydrogen Energy
0360-3199,
30
, pp.
1221
1233
.
54.
Costamagna
,
P.
, and
Honegger
,
K.
, 1998, “
Modelling of a SOFC Energy Generation System Integrated Stacks and Simulation at High Fuel Utilization
,”
J. Electrochem. Soc.
0013-4651,
145
(
11
), pp.
3995
4007
.
55.
Buchinger
,
G.
,
Kraut
,
J.
,
Raab
,
T.
,
Griesser
,
S.
,
Lawlor
,
V.
,
Haiber
,
J.
,
Hiesgen
,
R.
,
Sitte
,
W.
, and
Meissner
,
D.
, 2007, “
Operating Micro-Tubular SOFCs Containing Nickel Based Anodes With Blends of Methane and Hydrogen
,”
Clean Electrical Power ICCEPP ‘07
.
56.
Cui
,
D.
,
Liu
,
L.
,
Dong
,
Y.
, and
Cheng
,
M.
, 2007, “
Comparison of Different Current Collecting Modes of Anode Supported Micro-Tubular SOFC Through Mathematical Modeling
,”
J. Power Sources
0378-7753,
174
, pp.
246
254
.
57.
Pakalapati
,
S. R.
, 2003, “
A Numerical Study of Current Distribution Inside the Cathode and Electrolyte of a Solid Oxide Fuel Cell
,” MS thesis, West Virginia University, Morgantown, WV.
58.
Iwata
,
M.
,
Hikosaka
,
T.
,
Morita
,
M.
,
Iwanari
,
T.
,
Ito
,
K.
,
Ondaa
,
K.
,
Esakib
,
Y.
,
Sakakib
,
Y.
, and
Nagata
,
S.
, 2000, “
Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions
,”
Solid State Ionics
0167-2738,
132
, pp.
297
308
.
59.
Ullmann
,
H.
,
Trofimenko
,
N.
,
Tietz
,
F.
,
Stover
,
D.
, and
Ahmad-Khanlou
,
A.
, 2000, “
Correlation Between Thermal Expansion and Oxide ion Transport in Mixed Conducting Perovskite-Type Oxides for SOFC Cathodes
,”
Solid State Ionics
0167-2738,
138
, pp.
79
90
.
60.
Aruna
,
S. T.
,
Muthuraman
,
M.
, and
Patil
,
K.
, 1998, “
Synthesis and Properties of Ni-YSZ Cermet: Anode Material for SOFC
,”
Solid State Ionics
0167-2738,
111
, pp.
45
51
.
61.
Li
,
P. -W.
, and
Suzuki
,
K.
, 2004, “
Numerical Modeling and Performance Study of a Tubular SOFC
,”
J. Electrochem. Soc.
0013-4651,
151
(
4
), pp.
A548
A557
.
You do not currently have access to this content.