Buoyancy driven heat transfer of water-based nanofluids in a differentially heated, tilted enclosure is investigated in this study. The governing equations (obtained with the Boussinesq approximation) are solved using the polynomial differential quadrature method for an inclination angle ranging from 0 deg to 90 deg, two different ratios of the nanolayer thickness to the original particle radius (0.02 and 0.1), a solid volume fraction ranging from 0% to 20%, and a Rayleigh number varying from 104 to 106. Five types of nanoparticles, Cu, Ag, CuO, Al2O3, and TiO2 are taken into consideration. The results show that the average heat transfer rate from highest to lowest is for Ag, Cu, CuO, Al2O3, and TiO2. The results also show that for the particle radius generally used in practice (β=0.1 or β=0.02), the average heat transfer rate increases to 44% for Ra=104, to 53% for Ra=105, and to 54% for Ra=106 if the special case of θ=90deg, which also produces the minimum heat transfer rates, is not taken into consideration. As for θ=90deg, the heat transfer enhancement reaches 21% for Ra=104, 44% for Ra=105, and 138% for Ra=106. The average heat transfer rate shows an increasing trend with an increasing inclination angle, and a peak value is detected. Beyond the peak point, the foregoing trend reverses and the average heat transfer rate decreases with a further increase in the inclination angle. Maximum heat transfer takes place at θ=45deg for Ra=104 and at θ=30deg for Ra=105 and 106.

1.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
718
720
.
2.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspension
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
3.
Xuan
,
Y.
, and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, (
1
), pp.
58
64
.
4.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
5.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
855
863
.
6.
Maxwell
,
J. C.
, 1881,
A Treatise on Electricity and Magnetism
,
Clarendon
,
Oxford, UK
.
7.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
0196-4313,
1
, pp.
187
191
.
8.
Yu
,
W.
, and
Choi
,
S. U. S.
, 2003, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
1388-0764,
5
, pp.
167
171
.
9.
Brinkman
,
H. C.
, 1952, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
0021-9606,
20
, pp.
571
581
.
10.
Xuan
,
Y.
,
Li
,
Q.
,
Xuan
,
Y.
, and
Li
,
Q.
, 1999, “
Experimental Research on the Viscosity of Nanofluids
,” Report of Nanjing University of Science and Technology.
11.
Xuan
,
Y.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
151
155
.
12.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Soyez
,
G.
,
Thompson
,
L. J.
, and
DiMelfi
,
R. J.
, 1999, “
Novel Thermal Properties of Nanostructured Materials
,”
J. Metastable Nanocryst. Mater.
1422-6375,
2–6
, pp.
629
634
.
13.
Wen
,
D.
, and
Ding
,
Y.
, 2004, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5181
5188
.
14.
Maiga
,
S. E. B.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
, 2004, “
Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube
,”
Superlattices Microstruct.
0749-6036,
35
, pp.
543
557
.
15.
Maiga
,
S. E. B.
,
Palm
,
S. J.
,
Nguyen
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
, 2005, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
530
546
.
16.
Akbarinia
,
A.
, and
Behzadmehr
,
A.
, 2007, “
Numerical Study of Laminar Mixed Convection of a Nanofluid in Horizontal Curved Tubes
,”
Appl. Therm. Eng.
1359-4311,
27
(
8–9
), pp.
1327
1337
.
17.
Mirmasoumi
,
S.
, and
Behzadmehr
,
A.
, 2008, “
Numerical Study of Laminar Mixed Convection of a Nanofluid in a Horizontal Tube Using Two-Phase Mixture Model
,”
Appl. Therm. Eng.
1359-4311,
28
(
7
), pp.
717
727
.
18.
Izadi
,
M.
,
Behzadmehr
,
A.
, and
Jalali-Vahida
,
D.
, 2009, “
Numerical Study of Developing Laminar Forced Convection of a Nanofluid in an Annulus
,”
Int. J. Therm. Sci.
1290-0729,
48
(
11
), pp.
2119
2129
.
19.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
, 2003, “
Buoyancy Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3639
3653
.
20.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
, 2008, “
Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper–Water Nanofluid
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
1113
1122
.
21.
Hwang
,
K. S.
,
Lee
,
J. H.
, and
Jang
,
S. P.
, 2007, “
Buoyancy-Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4003
4010
.
22.
Jou
,
R. -Y.
, and
Tzeng
,
S. -C.
, 2006, “
Numerical Research of Nature Convective Hat Transfer Enhancement Filled With Nanofluids in Rectangular Enclosures
,”
Int. Commun. Heat Mass Transf.
,
33
, pp.
727
736
.
23.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
, 2008, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
0142-727X,
29
(
5
), pp.
1326
1336
.
24.
Aminossadati
,
S. M.
, and
Ghasemi
,
B.
, 2009, “
Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure
,”
Eur. J. Mech. B/Fluids
0997-7546,
28
(
5
), pp.
630
640
.
25.
Tiwari
,
R. K.
, and
Das
,
M. K.
, 2007, “
Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2002
2018
.
26.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2005, “
Laminar Nanofluid Flow in Microheat-Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2652
2661
.
27.
Kahveci
,
K.
, 2007, “
Numerical Simulation of Natural Convection in a Partitioned Enclosure Using PDQ Method
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
17
(
4
), pp.
439
456
.
28.
Kahveci
,
K.
, 2007, “
Natural Convection in a Partitioned Vertical Enclosure Heated With a Uniform Heat Flux
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
717
726
.
29.
Kahveci
,
K.
, 2007, “
A Differential Quadrature Solution of Natural Convection in an Enclosure With a Finite Thickness Partition
,”
Numer. Heat Transfer, Part A
1040-7782,
51
(
10
), pp.
979
1002
.
30.
Kahveci
,
K.
, and
Öztuna
,
S.
, 2008, “
A Differential Quadrature Solution of MHD Natural Convection in an Inclined Enclosure With a Partition
,”
ASME J. Fluids Eng.
0098-2202,
130
, p.
021102
.
31.
Öztuna
,
S.
, 2007, “
A Differential Quadrature Solution of Natural Convection in an Enclosure With a Partial Partition
,”
Numer. Heat Transfer, Part A
1040-7782,
52
(
11
), pp.
1009
1026
.
32.
Oztop
,
H. F.
, and
Dagtekin
,
I.
, 2004, “
Mixed Convection in Two-Sided Lid-Driven Differentially Heated Square Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1761
1769
.
33.
Bilgen
,
E.
, and
Oztop
,
H.
, 2005, “
Natural Convection Heat Transfer in Partially Open Inclined Square Cavities
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
8
), pp.
1470
1479
.
34.
Oztop
,
H.
, and
Bilgen
,
E.
, 2006, “
Natural Convection in Differentially Heated and Partially Divided Square Cavities With Internal Heat Generation
,”
Int. J. Heat Fluid Flow
0142-727X,
27
, pp.
466
475
.
35.
Oztop
,
H. F.
, 2007, “
Natural Convection in Tilted Porous Enclosures With Discrete Heat Sources
,”
Journal of Energy, Heat Mass Transfer
,
29
, pp.
83
94
.
36.
Oztop
,
H. F.
, 2007, “
Natural Convection in Partially Cooled and Inclined Porous Rectangular Enclosures
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
149
156
.
37.
Lamsaadi
,
M.
,
Naimi
,
M.
,
Hasnaoui
,
M.
, and
Mamou
,
M.
, 2006, “
Natural Convection in a Vertical Rectangular Cavity With a Non-Newtonian Power Law Fluid and Subjected to a Horizontal Temperature Gradient
,”
Numer. Heat Transfer, Part A
1040-7782,
49
, pp.
969
990
.
38.
Bazylak
,
A.
,
Djilali
,
N.
, and
Sinton
,
D.
, 2006, “
Natural Convection in an Enclosure With Distributed Heat Sources
,”
Numer. Heat Transfer, Part A
1040-7782,
49
, pp.
655
667
.
39.
Nakhi
,
A. B.
, and
Chamkha
,
A. J.
, 2006, “
Effect of Length and Inclination of a Thin Fin on Natural Convection in a Square Enclosure
,”
Numer. Heat Transfer, Part A
1040-7782,
50
(
3
), pp.
389
407
.
40.
Ridouane
,
E. H.
,
Hasnaoui
,
M.
,
Amahmid
,
A.
, and
Raji
,
A.
, 2004, “
Interaction Between Natural Convection and Radiation in a Square Cavity Heated From Below
,”
Numer. Heat Transfer, Part A
1040-7782,
45
(
3
), pp.
289
311
.
41.
Gill
,
A. E.
, 1966, “
The Boundary Layer Regime for Convection in a Rectangular Cavity
,”
J. Fluid Mech.
0022-1120,
26
, pp.
515
536
.
42.
Shu
,
C.
, 2000,
Differential Quadrature and Its Application in Engineering
,
Springer-Verlag
,
Berlin
.
43.
Bellman
,
R. E.
,
Kashef
,
B. G.
, and
Casti
,
J.
, 1972, “
Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
0021-9991,
10
, pp.
40
52
.
44.
Shu
,
C.
, 1992, “
Generalized Differential-Integral Quadrature and Application to the Simulation of Incompressible Viscous Flows Including Parallel Computation
,” Ph.D. thesis, University of Glasgow, Glasgow, UK.
45.
Shu
,
C.
, and
Richards
,
B. E.
, 1992, “
Application of Generalized Differential Quadrature to Solve Two-Dimensional Incompressible Navier–Stokes Equations
,”
Int. J. Numer. Methods Fluids
0271-2091,
15
, pp.
791
798
.
46.
De Vahl Davis
,
G. V.
, 1983, “
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution
,”
Int. J. Numer. Methods Fluids
0271-2091,
3
, pp.
249
264
.
47.
Tzou
,
D. Y.
, 2008, “
Instability of Nanofluids in Natural Convection
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
072401
.
48.
Hasnaoui
,
M.
,
Bilgen
,
E.
, and
Vasseur
,
P.
, 1992, “
Natural Convection Heat Transfer in Rectangular Cavities Partially Heated From Below
,”
J. Thermophys. Heat Transfer
0887-8722,
6
(
2
), pp.
255
264
.
49.
Zeinali Heris
,
S.
,
Etemad
,
S. G.
, and
Esfahany
,
M. N.
, 2006, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
0735-1933,
33
, pp.
529
535
.
50.
Zeinali Heris
,
S.
,
Esfahany
,
M. N.
, and
Etemad
,
S. G.
, 2007, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
203
210
.
51.
Mirmasoumi
,
S.
, and
Behzadmehr
,
A.
, 2008, “
Effect of Nanoparticles Mean Diameter on Mixed Convection Heat Transfer of a Nanofluid in a Horizontal Tube
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
557
566
.
52.
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, 2009, “
Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
2189
2195
.
53.
Wang
,
B. -X.
,
Zhou
,
L. -P.
, and
Peng
,
X. -F.
, 2003, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2665
2672
.
54.
Tillman
,
P.
, and
Hill
,
J. M.
, 2007, “
Determination of Nanolayer Thickness for a Nanofluid
,”
Int. Commun. Heat Mass Transf.
,
34
, pp.
399
407
.
You do not currently have access to this content.