In this study, the heat transfer and friction correlation of a single row heat exchanger with helically finned tubes are experimentally determined. The transversal tube pitch was parametrically varied. A detailed description of the test rig and the data reduction procedure is given. A thorough uncertainty analysis was performed to validate the results. The proposed heat transfer correlation can describe 95% of the data within ±11% and shows a 4.49% mean deviation. The friction correlation predicts 95% of the data within ±19% with a mean deviation of 6.84%. The new correlations show the same trend as most correlations from open literature, but none of the literature correlations are able to accurately predict the results of this study.

1.
Webb
,
R. L.
, 1980, “
Air-Side Heat Transfer in Finned Tube Heat Exchangers
,”
Heat Transfer Eng.
0145-7632,
1
(
3
), pp.
33
49
.
2.
Kreith
,
F.
, 2000,
The CRC Handbook of Thermal Engineering
,
CRC
,
Boca Raton, FL
.
3.
Kuppan
,
T.
, 2000,
Heat Exchanger Design Handbook
,
Marcel Dekker, Inc.
,
New York
.
4.
Kim
,
C. N.
,
Jeong
,
J.
, and
Youn
,
B.
, 2003, “
Evaluation of Thermal Contact Conductance Using a New Experimental-Numerical Method in Fin-Tube Heat Exchangers
,”
Int. J. Refrig.
0140-7007,
26
(
8
), pp.
900
908
.
5.
Jameson
,
S. L.
, 1945, “
Tube Spacing in Finned-Tube Banks
,”
Trans. ASME
0097-6822,
67
, pp.
633
642
.
6.
Gunter
,
A. Y.
, and
Shaw
,
W. A.
, 1945, “
A General Correlation of Friction Factors for Various Types of Surfaces in Crossflow
,”
Trans. ASME
0097-6822,
67
, pp.
643
660
.
7.
Ward
,
D. J.
, and
Young
,
E. H.
, 1963, “
Heat Transfer and Pressure Drop of Air in Forced Convection Across Triangular Pitch Banks of Finned Tubes
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
59
(
41
), pp.
37
44
.
8.
Robinson
,
K. K.
, and
Briggs
,
D. E.
, 1966, “
Pressure Drop of Air Flowing Across Triangular Pitch Banks of Finned Tubes
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
62
(
64
), pp.
177
184
.
9.
Briggs
,
D. E.
, and
Young
,
E. H.
, 1963, “
Convection Heat Transfer and Pressure Drop of Air Flowing Across Triangular Pitch Banks of Finned Tubes
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
59
(
41
), pp.
1
10
.
10.
Mirkovic
,
Z.
, 1974, “
Heat Transfer and Flow Resistance Correlation for Helically Finned and Staggered Tube Banks in Crossflow
,”
Heat Exchangers: Design and Theory Source Book
,
N. H.
Afgan
and
E. U.
Schlunder
, eds.,
Hemisphere
,
Washington, DC
, pp.
559
584
.
11.
Nir
,
A.
, 1991, “
Heat Transfer and Friction Factor Correlations for Crossflow Over Staggered Finned Tube Banks
,”
Heat Transfer Eng.
0145-7632,
12
(
1
), pp.
43
58
.
12.
Krupiczka
,
R.
,
Rotkegel
,
A.
,
Walczyk
,
H.
, and
Dobner
,
L.
, 2003, “
An Experimental Study of Convective Heat Transfer From Extruded Type Helical Finned Tubes
,”
Chem. Eng. Process.
0255-2701,
42
, pp.
29
38
.
13.
Genic
,
S. B.
,
Jacimovic
,
B. M.
, and
Latinovic
,
B. R.
, 2006, “
Research on Air Pressure Drop in Helically-Finned Tube Heat Exchangers
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
478
485
.
14.
1986, “
High-Fin Staggered Tube Banks: Heat Transfer and Pressure Drop for Turbulent Single Phase Gas Flow
,”
ESDU
Paper No. 86022.
15.
Huber
,
F. V.
, and
Rabas
,
T. J.
, 1985, “
The Effect of Geometry on the Heat Transfer Row Correction for Typical Finned Tube Bundles
,”
AIChE National Heat Transfer Conference
, Denver, CO.
16.
Eckels
,
P. W.
, and
Rabas
,
T. J.
, 1985, “
Heat Transfer and Pressure Drop of Typical Air Cooler Finned Tubes
,”
ASME J. Heat Transfer
0022-1481,
107
, pp.
198
204
.
17.
Brauer
,
H.
, 1961, “
Wärme- und Strömungstechnische Untersuchungen an Quer Angeströmten Rippenrohrbündeln, Teil 1: Versuchsanlagen und Meßergebnisse bei Höheren Drücken
,”
Chem.- Ing.- Tech.
,
33
, pp.
327
335
.
18.
Brauer
,
H.
, 1961, “
Wärme- und Strömungstechnische Untersuchungen an Quer Angeströmten Rippenrohrbündeln, Teil 2: Einfluß der Rippen- und der Rohranordnung
,”
Chem.- Ing.- Tech.
,
33
, pp.
431
438
.
19.
Brauer
,
H.
, 1962,
Wärmeubertragung und Strömungswiderstand bei Fluchtend und Versetztargeordneten Rippenrohren
,
Dechema Monograpic
, Vol.
40
.
20.
Yudin
,
V. F.
, 1982,
Teploobmen Poperechno Orebrennykh Trub
,
Mashinostroenie
,
Leningrad
.
21.
Weierman
,
C.
, 1977, “
Pressure Drop Data for Heavy-Duty Finned Tubes
,”
Chem. Eng. Prog.
0360-7275,
73
(
2
), pp.
69
72
.
22.
Lapin
,
A.
, and
Schurig
,
F.
, 1959, “
Heat Transfer Coefficients for Finned Exchangers
,”
Ind. Eng. Chem.
0019-7866,
51
(
8
), pp.
941
944
.
23.
Schmidt
,
E.
, 1963, “
Der Wärmeübergang an Rippenrohren und die Berechnung von Rohrbündel-Wärmeaustauschern
,”
Kältetechnik
,
15
(
12
), pp.
370
378
.
24.
Sparrow
,
E. M.
, and
Samie
,
F.
, 1985, “
Heat Transfer and Pressure Drop Results for One- and Two-Row Arrays of Finned Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
12
), pp.
2247
2259
.
25.
T’Joen
,
C.
,
Steeman
,
H. J.
,
Willockx
,
A.
, and
De Paepe
,
M.
, 2006, “
Determination of Heat Transfer and Friction Characteristics of an Adapted Inclined Louvered Fin
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
319
327
.
26.
T’Joen
,
C.
,
Willockx
,
A.
,
Steeman
,
H. J.
, and
De Paepe
,
M.
, 2007, “
Performance Prediction of Compact Fin-and-Tube Heat Exchangers in Maldistributed Airflow
,”
Heat Transfer Eng.
0145-7632,
28
(
12
), pp.
986
996
.
27.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
28.
Kadoya
,
K.
,
Matsunaga
,
N.
, and
Nagashima
,
A.
, 1985, “
Viscosity and Thermal-Conductivity of Dry Air in the Gaseous-Phase
,”
J. Phys. Chem. Ref. Data
0047-2689,
14
(
4
), pp.
947
970
.
29.
1996, “
IAPWS Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (IAPWS-95)
,” available at http://www.iapws.orghttp://www.iapws.org.
30.
2007, “
Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (IAPWS-IF97)
,” available at http://www.iapws.orghttp://www.iapws.org.
31.
Shah
,
R. K.
, and
Sekulic
,
D. P.
, 2003,
Fundamentals of Heat Exchanger Design
,
Wiley
,
Hoboken, NJ
.
32.
Gnielinski
,
V.
, 1976, “
New Equations for Heat and Mass Transfer in Turbulent Tube and Channel Flow
,”
Int. Chem. Eng.
0020-6318,
29
, pp.
359
368
.
33.
Abraham
,
J. P.
,
Sparrow
,
E. M.
, and
Tong
,
J. C. K.
, 2009, “
Heat Transfer in All Pipe Flow Regimes: Laminar, Transitional/Intermittent, and Turbulent
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
557
563
.
34.
Schmidt
,
T. E.
, 1949, “
Heat Transfer Calculations for Extended Surfaces
,”
Refrig. Eng.
0096-0470, April, pp.
351
357
.
35.
Rabas
,
T. J.
, and
Taborek
,
J.
, 1987, “
Survey of Turbulent Forced Convection Heat Transfer and Pressure Drop Characteristics of Low Finned Tube Banks in Crossflow
,”
Heat Transfer Eng.
0145-7632,
8
, pp.
49
62
.
36.
Kays
,
W. M.
, and
London
,
A. L.
, 1984,
Compact Heat Exchangers
, 3rd ed.,
McGraw-Hill
,
New York
.
37.
Zukauskas
,
A.
, 1972, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transfer
0065-2717,
8
, pp.
93
160
.
You do not currently have access to this content.