The radiative characteristics of dependently scattering packed-beds of ZnO particles, applied in the design of high-temperature solar thermochemical reactors, were investigated experimentally. ZnO samples of varying thickness were exposed to a continuous beam of near monochromatic thermal radiation in the 0.51μm wavelength range. The overall transmitted fraction measured as a function of sample thickness s obeys an exponential trend exp(As), with the fit parameter A ranging from 4000±100m1 at 555 nm to 2100±100m1 at 1μm. In the forward directions, the measured intensity distribution is approximately isotropic, whereas in the backward directions it is well approximated by a Henyey–Greenstein equation with asymmetry factors g0.4 at 555 nm and g0.1 at 1μm. A Monte Carlo ray-tracing model of the experimental setup is employed to extract the extinction coefficient and the scattering albedo for the case of a nongray absorbing-scattering medium.

1.
Steinfeld
,
A.
, 2002, “
Solar Hydrogen Production Via a 2-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
0360-3199,
27
, pp.
611
619
.
2.
Schunk
,
L.
,
Haeberling
,
P.
,
Wepf
,
S.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
, 2008, “
A Solar Receiver-Reactor for the Thermal Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
0199-6231,
130
, p.
021009
.
3.
Steinfeld
,
A.
, and
Palumbo
,
R.
, 2001, “
Thermochemical Process Technology
,”
Encyclopedia of Physical Science and Technology
, Vol.
15
,
R. A.
Meyers
, ed.,
Academic
,
San Diego, CA
, pp.
237
256
.
4.
Müller
,
R.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
, 2008, “
Transient Heat Transfer in a Directly-Irradiated Solar Chemical Reactor for the Thermal Dissociation of ZnO
,”
Appl. Therm. Eng.
1359-4311,
28
(
5–6
), pp.
524
531
.
5.
Agarwal
,
B. M.
, and
Mengüç
,
M. P.
, 1991, “
Forward and Inverse Analysis of Single and Multiple Scattering of Collimated Radiation in an Axisymmetric System
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
633
647
.
6.
Baillis
,
D.
, and
Sacadura
,
J. -F.
, 2000, “
Thermal Radiation Properties of Dispersed Media: Theoretical Prediction and Experimental Characterization
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
67
, pp.
327
363
.
7.
Kamiuto
,
K.
,
Iwamoto
,
M.
,
Nishimura
,
T.
, and
Sato
,
M.
, 1991, “
Radiation-Extinction Coefficients of Packed-Sphere Systems
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
45
, pp.
93
96
.
8.
Jones
,
P. D.
,
McLeod
,
D. G.
, and
Dorai-Raj
,
D. E.
, 1996, “
Correlation of Measured and Computed Radiation Intensity Exiting a Packed Bed
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
94
102
.
9.
Lopes
,
R.
,
Moura
,
L. M.
,
Baillis
,
D.
, and
Sacadura
,
J. -F.
, 2001, “
Directional Spectral Emittance of a Packed Bed: Correlation Between Theoretical Prediction and Experimental Data
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
240
248
.
10.
Kuhn
,
J.
,
Korder
,
S.
,
Arduini-Schuster
,
M. C.
,
Caps
,
R.
, and
Fricke
,
J.
, 1993, “
Infrared-Optical Transmission and Reflection Measurements on Loose Powders
,”
Rev. Sci. Instrum.
0034-6748,
64
, pp.
2523
2530
.
11.
Ishimaru
,
A.
, and
Kuga
,
Y.
, 1982, “
Attenuation Constant of a Coherent Field in a Dense Distribution of Particles
,”
J. Opt. Soc. Am.
0030-3941,
72
, pp.
1317
1320
.
12.
Hespel
,
L.
,
Maiguy
,
S.
, and
Greffet
,
J. -J.
, 2003, “
Radiative Properties of Scattering and Absorbing Dense Media: Theory and Experimental Study
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
77
, pp.
193
210
.
13.
Lipiński
,
W.
,
Guillot
,
E.
,
Olalde
,
G.
, and
Steinfeld
,
A.
, 2008, “
Transmittance Enhancement of Packed-Bed Particulate Media
,”
Exp. Heat Transfer
0891-6152,
21
(
1
), pp.
73
82
.
14.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
San Diego, CA
.
15.
Tien
,
C. L.
, and
Drohlen
,
B. L.
, 1987, “
Thermal Radiation in Particulate Media With Dependent and Independent Scattering
,”
Annu. Rev. Numer. Fluid Mech. Heat Transfer
0892-6883,
1
, pp.
1
32
.
16.
Farmer
,
J. T.
, and
Howell
,
J. R.
, 1998, “
Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media
,”
Advances in Heat Transfer
, Vol.
31
,
J. P.
Harnett
and
T. F.
Irvine
, eds.,
Academic
,
San Diego, CA
, pp.
333
429
.
17.
Gross
,
H.
, 2005,
Handbook of Optical Systems
, Vol.
1
,
Wiley-VCH
,
Weinheim, Germany
.
18.
Singh
,
B. P.
, and
Kaviany
,
M.
, 1992, “
Modelling Radiative Heat Transfer in Packed Beds
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
6
), pp.
1397
1405
.
19.
Dombrovsky
,
L.
,
Schunk
,
L.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
, 2009, “
An Abation Model for the Thermal Decomposition of Porous Zinc Oxide Layer Heated by Concentrated Solar Radiation
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
2444
2452
.
20.
Dombrovsky
,
L. A.
, 1996,
Radiation Heat Transfer in Disperse Systems
,
Begell House
,
New York
.
21.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 1983,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
22.
Dombrovsky
,
L. A.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
, 2007, “
A Diffusion-Based Approximate Model for Radiation Heat Transfer in a Solar Thermochemical Reactor
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
103
(
3
), pp.
601
610
.
23.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
,
Springer
,
New York
.
24.
Touloukian
,
Y. S.
, and
DeWitt
,
D. P.
, 1972,
Thermal Radiative Properties—Nonmetallic Solids
,
IFI/Plenum
,
New York
.
You do not currently have access to this content.