This paper presents a micropulse calorimeter for heat capacity measurement of thin films. Optimization of the structure and data processing methods of the microcalorimeter improved the thermal isolation and temperature uniformity and reduced the heat capacity measurement errors. Heat capacities of copper thin films with thicknesses from 20 nm to 340 nm are measured in the temperature range from 300 K to 420 K in vacuum of 1 mPa. The specific heat of the 340 nm Cu film is close to the literature data of bulk Cu. For the thinner films, the data shows that the specific heat increases with the decreasing of film thickness (or the average crystalline size).

1.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
(
2
), pp.
793
818
.
2.
Maillet
,
D.
,
Moyne
,
C.
, and
Remy
,
B.
, 2000, “
Effect of a Thin Layer on the Measurement of the Thermal Diffusivity of a Material by a Flash Method
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
21
), pp.
4057
4060
.
3.
Jain
,
A.
, and
Goodson
,
K. E.
, 2008, “
Measurement of the Thermal Conductivity and Heat Capacity of Freestanding Shape Memory Thin Films Using the 3ω Method
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
102402
.
4.
Hopkins
,
P. E.
, and
Phinney
,
L. M.
, 2009, “
Thermal Conductivity Measurements on Polycrystalline Silicon Microbridges Using the 3ω Technique
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
043201
.
5.
Huang
,
Z. X.
,
Tang
,
Z. A.
,
Xu
,
Z. Q.
,
Ding
,
H. T.
, and
Gu
,
Y. Q.
, 2004, “
In-Plane Thermal Diffusivity Measurement of Thin Films Based on the Alternating-Current Calorimetric Method Using an Optical Reflectivity Technique
,”
Chin. Phys. Lett.
0256-307X,
21
(
4
), pp.
713
715
.
6.
Cahill
,
D. G.
,
Goodson
,
K. E.
, and
Majumdar
,
A.
, 2002, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
223
241
.
7.
van Herwaarden
,
A. W.
, 2005, “
Overview of Calorimeter Chips for Various Applications
,”
Thermochim. Acta
0040-6031,
432
, pp.
192
201
.
8.
Denlinger
,
D. W.
,
Abarra
,
E. N.
,
Allen
,
K.
,
Rooney
,
P. W.
,
Messer
,
M. T.
,
Watson
,
S. K.
, and
Hellman
,
F.
, 1994, “
Thin Film Microcalorimeter for Heat Capacity Measurements From 1.5 to 800 K
,”
Rev. Sci. Instrum.
0034-6748,
65
(
4
), pp.
946
959
.
9.
Allen
,
K.
, and
Hellman
,
F.
, 1999, “
Specific Heat of C60 and K3C60 Thin Films for T=6–400 K
,”
Phys. Rev. B
0163-1829,
60
(
16
), pp.
11765
11772
.
10.
Fominaya
,
F.
,
Fournier
,
T.
,
Gandit
,
P.
, and
Chaussy
,
J.
, 1997, “
Nanocalorimeter for High Resolution Measurements of Low Temperature Heat Capacities of Thin Films and Single Crystals
,”
Rev. Sci. Instrum.
0034-6748,
68
(
11
), pp.
4191
4195
.
11.
Bourgeois
,
O.
,
Skipetrov
,
S. E.
,
Ong
,
F.
, and
Chaussy
,
J.
, 2005, “
Attojoule Calorimetry of Mesoscopic Superconducting Loops
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
057007
.
12.
Fon
,
W. C.
,
Schwab
,
K. C.
,
Worlock
,
J. M.
, and
Roukes
,
M. L.
, 2005, “
Nanoscale Phonon-Coupled Calorimetry With Sub-Attojoule/Kelvin Resolution
,”
Nano Lett.
1530-6984,
5
(
10
), pp.
1968
1970
.
13.
Song
,
Q. L.
,
Cui
,
Z.
,
Xia
,
S. H.
,
Chen
,
Z. F.
, and
Zhang
,
J. G.
, 2004, “
Measurement of SiNx Thin Film Thermal Property With Suspended Membrane Structure
,”
Sens. Actuators, A
0924-4247,
112
, pp.
122
126
.
14.
Lai
,
S. L.
,
Ramanath
,
G.
, and
Allen
,
L. H.
, 1997, “
Heat Capacity Measurements of Sn Nanostructures Using a Thin-Film Differential Scanning Calorimeter With 0.2 nJ Sensitivity
,”
Appl. Phys. Lett.
0003-6951,
70
(
1
), pp.
43
45
.
15.
Olson
,
E. A.
,
Efremov
,
M. Y.
,
Zhang
,
M.
,
Zhang
,
Z.
, and
Allen
,
L. H.
, 2003, “
The Design and Operation of a MEMS Differential Scanning Nanocalorimeter for High-Speed Heat Capacity Measurements of Ultrathin Films
,”
J. Microelectromech. Syst.
1057-7157,
12
(
3
), pp.
355
364
.
16.
Efremov
,
M. Y.
,
Olson
,
E. A.
,
Zhang
,
M.
,
Schiettekatte
,
F.
,
Zhang
,
Z.
, and
Allen
,
L. H.
, 2004, “
Ultrasensitive, Fast, Thin-Film Differential Scanning Calorimeter
,”
Rev. Sci. Instrum.
0034-6748,
75
(
1
), pp.
179
191
.
17.
Efremov
,
M. Y.
,
Olson
,
E. A.
,
Zhang
,
M.
,
Schiettekatte
,
F.
,
Zhang
,
Z.
, and
Allen
,
L. H.
, 2004, “
Thin-Film Differential Scanning Nanocalorimetry: Heat Capacity Analysis
,”
Thermochim. Acta
0040-6031,
412
(
1–2
), pp.
13
23
.
18.
Lopeandia
,
A. F.
,
Cerdo
,
L. I.
,
Arana
,
L. R.
,
Jensen
,
K. F.
,
Munoz
,
F. J.
, and
Rodriguez-Viejo
,
J.
, 2005, “
Sensitive Power Compensated Scanning Calorimeter for Analysis of Phase Transformations in Small Samples
,”
Rev. Sci. Instrum.
0034-6748,
76
, p.
065104
.
19.
Lopeandia
,
A. F.
,
Gutierrez
,
E. L.
,
Viejo
,
J. R.
, and
Munoz
,
F. J.
, 2007, “
Design Issues Involved in the Development of a Membrane-Based High-Temperature Nanocalorimeter
,”
Microelectron. Eng.
0167-9317,
84
, pp.
1288
1291
.
20.
Minakov
,
A. A.
,
Herwaarden
,
A. W.
,
Wien
,
W.
,
Wurm
,
A.
, and
Schick
,
C.
, 2007, “
Advanced Nonadiabatic Ultrafast Nanocalorimetry and Superheating Phenomenon in Linear Polymers
,”
Thermochim. Acta
0040-6031,
461
, pp.
96
106
.
21.
Minakow
,
A. A.
,
Morikawa
,
J.
,
Hasimoto
,
T.
,
Huth
,
H.
, and
Schick
,
C.
, 2006, “
Temperature Distribution in a Thin-Film Chip Utilized for Advanced Nanocalorimetry
,”
Meas. Sci. Technol.
0957-0233,
17
, pp.
199
207
.
22.
Yu
,
J.
,
Tang
,
Z. A.
,
Zhang
,
F. T.
,
Wei
,
G F.
.
, and
Wang
,
L. D.
, 2005, “
Investigation of a Microcalorimeter for Thin-Film Heat Capacity Measurement
,”
Chin. Phys. Lett.
0256-307X,
22
, pp.
2429
2432
.
23.
Andrea
,
T.
, and
Sarro
,
P. M.
, 1999, “
Measurement of Thermal Conductivity and Diffusivity of Single and Multiplayer Membranes
,”
Sens. Actuators, A
0924-4247,
76
, pp.
323
328
.
24.
Chan
,
C. H.
,
Yan
,
G.
,
Sheng
,
L.
,
Sharma
,
R. K.
,
Tang
,
Z.
,
Sin
,
J. K. O.
,
Hsing
,
I. M.
, and
Wang
,
Y.
, 2002, “
An Integrated Gas Sensor Technology Using Surface Micro-Machining
,”
Sens. Actuators B
0925-4005,
82
, pp.
277
283
.
25.
Chang
,
K.
,
Lin
,
R.
, and
Deng
,
I.
, 2007, “
Design of Low-Temperature CMOS-Process Compatible Membrane Fabricated With Sacrificial Aluminum Layer for Thermally Isolated Applications
,”
Sens. Actuators, A
0924-4247,
134
(
2
), pp.
660
667
.
26.
Pham
,
H. T. M.
,
Bagolini
,
A.
,
Boer
,
C. R.
,
Laros
,
J. M. W.
,
Pakula
,
L.
,
French
,
P. J.
, and
Sarro
,
P. M.
, 2003, “
Polyimide Sacrificial Layer for an All-Dry Post-Process Surface Micromachining Module
,”
The 12th International Conference on Solid State Sensors, Actuators and Microsystems
, Boston, MA, Jun. 8–12, pp.
813
816
.
27.
Yan
,
G. Z.
,
Chan
,
P. C. H.
,
Hsing
,
I. M.
,
Sharma
,
R. K.
, and
Sin
,
J. K. O.
, 2000, “
An Improved TMAH Si-Etching Solution Without Attacking Exposed Aluminum
,”
Proceedings of the 13th IEEE International Micro Electro Mechanical Systems Conference (MEMS 2000)
, Miyazaki, Japan, pp.
562
567
.
28.
Yu
,
J.
,
Tang
,
Z. A.
,
Chan
,
P. C. H.
,
Wei
,
G. F.
,
Wang
,
L. D.
, and
Yan
,
G. Z.
, 2005, “
Thermal Analysis of Silicon Micromachining Based Micro Hotplates
,”
Chin. J. Semicond.
0253-4177,
26
(
1
), pp.
192
196
.
29.
Cezairliyan
,
A.
,
Anderson
,
A. C.
,
Bonnell
,
D. W.
,
Brooks
,
C. R.
,
Chasanov
,
M. G.
,
Ditmars
,
D. A.
,
Fischer
,
D. F.
,
Kirby
,
R. K.
,
Kraftmakher
,
Ya. A.
,
Leibowitz
,
L.
,
Loriers-Susse
,
C.
,
Margrave
,
J. L.
,
Martin
,
D. L.
,
Miller
,
A. P.
,
Montgomery
,
R. L.
,
Mraw
,
S. C.
,
Stansbury
,
E. E.
,
Stephenson
,
B.
,
Sundareswaran
,
P. C.
, and
Westrum
,
E. F.
, 1988,
Specific Heat of Solids
,
C. Y.
Ho
, ed.,
Hemisphere
,
New York
, p.
323
.
30.
Guinier
,
A.
, 1963,
X-Ray Diffraction
,
W. H. Freeman
,
San Francisco, CA
, p.
121
.
31.
Touloukian
,
Y. S.
, and
Buyco
,
E. H.
, 1970,
Specific Heat: Metallic Elements and Alloys
,
IFI/Plenum
,
New York
.
32.
Rupp
,
J.
, and
Birringer
,
R.
, 1987, “
Enhanced Specific-Heat-Capacity (cp) Measurements (150–300 K) of Nanometer-Sized Crystalline Materials
,”
Phys. Rev. B
0163-1829,
36
(
15
), pp.
7888
7890
.
33.
Lopeandia
,
A. F.
,
Pi
,
F.
, and
Rodriguez-Viejo
,
J.
, 2008, “
Nanocalorimetric Analysis of the Ferromagnetic Transition in Ultrathin Films of Nickel
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
122503
.
34.
Sun
,
N. X.
, and
Lu
,
K.
, 1996, “
Heat-Capacity Comparison Among the Nanocrystalline, Amorphous, and Coarse-Grained Polycrystalline States in Element Selenium
,”
Phys. Rev. B
0163-1829,
54
, pp.
6058
6061
.
35.
Balogh
,
J.
,
Kemeny
,
T.
,
Vincze
,
I.
,
Szabo
,
S.
,
Beke
,
D. L.
, and
Toth
,
J.
, 1999, “
Comment on “Grain-Boundary Structure and Magnetic Behavior in Nanocrystalline Ball-Milled Iron”
,”
Phys. Rev. B
0163-1829,
59
, pp.
14786
14787
.
36.
Meyer
,
R.
,
Lewis
,
L. J.
,
Prakash
,
S.
, and
Entel
,
P.
, 2003, “
Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials
,”
Phys. Rev. B
0163-1829,
68
, p.
104303
.
37.
Zhang
,
Y.
,
Cao
,
J. X.
,
Xiao
,
Y.
, and
Yan
,
X. H.
, 2007, “
Phonon Spectrum and Specific Heat of Silicon Nanowires
,”
J. Appl. Phys.
0021-8979,
102
, pp.
104303
.
38.
Zhao
,
Y. H.
, and
Lu
,
K.
, 1997, “
Grain-Size Dependence of Thermal Properties of Nanocrystalline Elemental Selenium Studied by X-Ray Diffraction
,”
Phys. Rev. B
0163-1829,
56
(
22
), pp.
14330
14337
.
39.
Kuru
,
Y.
,
Wohlschlögel
,
M.
,
Welzel
,
U.
, and
Mittemeijer
,
E. J.
, 2008, “
Coefficients of Thermal Expansion of Thin Metal Films Investigated by Non-Ambient X-Ray Diffraction Stress Analysis
,”
Surf. Coat. Technol.
0257-8972,
202
, pp.
2306
2309
.
You do not currently have access to this content.