This paper presents a micropulse calorimeter for heat capacity measurement of thin films. Optimization of the structure and data processing methods of the microcalorimeter improved the thermal isolation and temperature uniformity and reduced the heat capacity measurement errors. Heat capacities of copper thin films with thicknesses from 20 nm to 340 nm are measured in the temperature range from 300 K to 420 K in vacuum of 1 mPa. The specific heat of the 340 nm Cu film is close to the literature data of bulk Cu. For the thinner films, the data shows that the specific heat increases with the decreasing of film thickness (or the average crystalline size).
Issue Section:
Micro/Nanoscale Heat Transfer
Keywords:
micro-/nanoscale heat transfer,
thin film,
heat capacity,
thermal characterization,
calorimetry,
copper,
metallic thin films,
specific heat
Topics:
Copper,
Heat capacity,
Specific heat,
Temperature,
Thin films,
Calorimetry,
Vacuum,
Membranes,
Errors,
Heat
1.
Cahill
, D. G.
, Ford
, W. K.
, Goodson
, K. E.
, Mahan
, G. D.
, Majumdar
, A.
, Maris
, H. J.
, Merlin
, R.
, and Phillpot
, S. R.
, 2003, “Nanoscale Thermal Transport
,” J. Appl. Phys.
0021-8979, 93
(2
), pp. 793
–818
.2.
Maillet
, D.
, Moyne
, C.
, and Remy
, B.
, 2000, “Effect of a Thin Layer on the Measurement of the Thermal Diffusivity of a Material by a Flash Method
,” Int. J. Heat Mass Transfer
0017-9310, 43
(21
), pp. 4057
–4060
.3.
Jain
, A.
, and Goodson
, K. E.
, 2008, “Measurement of the Thermal Conductivity and Heat Capacity of Freestanding Shape Memory Thin Films Using the 3ω Method
,” ASME J. Heat Transfer
0022-1481, 130
, p. 102402
.4.
Hopkins
, P. E.
, and Phinney
, L. M.
, 2009, “Thermal Conductivity Measurements on Polycrystalline Silicon Microbridges Using the 3ω Technique
,” ASME J. Heat Transfer
0022-1481, 131
, p. 043201
.5.
Huang
, Z. X.
, Tang
, Z. A.
, Xu
, Z. Q.
, Ding
, H. T.
, and Gu
, Y. Q.
, 2004, “In-Plane Thermal Diffusivity Measurement of Thin Films Based on the Alternating-Current Calorimetric Method Using an Optical Reflectivity Technique
,” Chin. Phys. Lett.
0256-307X, 21
(4
), pp. 713
–715
.6.
Cahill
, D. G.
, Goodson
, K. E.
, and Majumdar
, A.
, 2002, “Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,” ASME J. Heat Transfer
0022-1481, 124
, pp. 223
–241
.7.
van Herwaarden
, A. W.
, 2005, “Overview of Calorimeter Chips for Various Applications
,” Thermochim. Acta
0040-6031, 432
, pp. 192
–201
.8.
Denlinger
, D. W.
, Abarra
, E. N.
, Allen
, K.
, Rooney
, P. W.
, Messer
, M. T.
, Watson
, S. K.
, and Hellman
, F.
, 1994, “Thin Film Microcalorimeter for Heat Capacity Measurements From 1.5 to 800 K
,” Rev. Sci. Instrum.
0034-6748, 65
(4
), pp. 946
–959
.9.
Allen
, K.
, and Hellman
, F.
, 1999, “Specific Heat of C60 and K3C60 Thin Films for T=6–400 K
,” Phys. Rev. B
0163-1829, 60
(16
), pp. 11765
–11772
.10.
Fominaya
, F.
, Fournier
, T.
, Gandit
, P.
, and Chaussy
, J.
, 1997, “Nanocalorimeter for High Resolution Measurements of Low Temperature Heat Capacities of Thin Films and Single Crystals
,” Rev. Sci. Instrum.
0034-6748, 68
(11
), pp. 4191
–4195
.11.
Bourgeois
, O.
, Skipetrov
, S. E.
, Ong
, F.
, and Chaussy
, J.
, 2005, “Attojoule Calorimetry of Mesoscopic Superconducting Loops
,” Phys. Rev. Lett.
0031-9007, 94
, p. 057007
.12.
Fon
, W. C.
, Schwab
, K. C.
, Worlock
, J. M.
, and Roukes
, M. L.
, 2005, “Nanoscale Phonon-Coupled Calorimetry With Sub-Attojoule/Kelvin Resolution
,” Nano Lett.
1530-6984, 5
(10
), pp. 1968
–1970
.13.
Song
, Q. L.
, Cui
, Z.
, Xia
, S. H.
, Chen
, Z. F.
, and Zhang
, J. G.
, 2004, “Measurement of SiNx Thin Film Thermal Property With Suspended Membrane Structure
,” Sens. Actuators, A
0924-4247, 112
, pp. 122
–126
.14.
Lai
, S. L.
, Ramanath
, G.
, and Allen
, L. H.
, 1997, “Heat Capacity Measurements of Sn Nanostructures Using a Thin-Film Differential Scanning Calorimeter With 0.2 nJ Sensitivity
,” Appl. Phys. Lett.
0003-6951, 70
(1
), pp. 43
–45
.15.
Olson
, E. A.
, Efremov
, M. Y.
, Zhang
, M.
, Zhang
, Z.
, and Allen
, L. H.
, 2003, “The Design and Operation of a MEMS Differential Scanning Nanocalorimeter for High-Speed Heat Capacity Measurements of Ultrathin Films
,” J. Microelectromech. Syst.
1057-7157, 12
(3
), pp. 355
–364
.16.
Efremov
, M. Y.
, Olson
, E. A.
, Zhang
, M.
, Schiettekatte
, F.
, Zhang
, Z.
, and Allen
, L. H.
, 2004, “Ultrasensitive, Fast, Thin-Film Differential Scanning Calorimeter
,” Rev. Sci. Instrum.
0034-6748, 75
(1
), pp. 179
–191
.17.
Efremov
, M. Y.
, Olson
, E. A.
, Zhang
, M.
, Schiettekatte
, F.
, Zhang
, Z.
, and Allen
, L. H.
, 2004, “Thin-Film Differential Scanning Nanocalorimetry: Heat Capacity Analysis
,” Thermochim. Acta
0040-6031, 412
(1–2
), pp. 13
–23
.18.
Lopeandia
, A. F.
, Cerdo
, L. I.
, Arana
, L. R.
, Jensen
, K. F.
, Munoz
, F. J.
, and Rodriguez-Viejo
, J.
, 2005, “Sensitive Power Compensated Scanning Calorimeter for Analysis of Phase Transformations in Small Samples
,” Rev. Sci. Instrum.
0034-6748, 76
, p. 065104
.19.
Lopeandia
, A. F.
, Gutierrez
, E. L.
, Viejo
, J. R.
, and Munoz
, F. J.
, 2007, “Design Issues Involved in the Development of a Membrane-Based High-Temperature Nanocalorimeter
,” Microelectron. Eng.
0167-9317, 84
, pp. 1288
–1291
.20.
Minakov
, A. A.
, Herwaarden
, A. W.
, Wien
, W.
, Wurm
, A.
, and Schick
, C.
, 2007, “Advanced Nonadiabatic Ultrafast Nanocalorimetry and Superheating Phenomenon in Linear Polymers
,” Thermochim. Acta
0040-6031, 461
, pp. 96
–106
.21.
Minakow
, A. A.
, Morikawa
, J.
, Hasimoto
, T.
, Huth
, H.
, and Schick
, C.
, 2006, “Temperature Distribution in a Thin-Film Chip Utilized for Advanced Nanocalorimetry
,” Meas. Sci. Technol.
0957-0233, 17
, pp. 199
–207
.22.
Yu
, J.
, Tang
, Z. A.
, Zhang
, F. T.
, Wei
, G F.
. , and Wang
, L. D.
, 2005, “Investigation of a Microcalorimeter for Thin-Film Heat Capacity Measurement
,” Chin. Phys. Lett.
0256-307X, 22
, pp. 2429
–2432
.23.
Andrea
, T.
, and Sarro
, P. M.
, 1999, “Measurement of Thermal Conductivity and Diffusivity of Single and Multiplayer Membranes
,” Sens. Actuators, A
0924-4247, 76
, pp. 323
–328
.24.
Chan
, C. H.
, Yan
, G.
, Sheng
, L.
, Sharma
, R. K.
, Tang
, Z.
, Sin
, J. K. O.
, Hsing
, I. M.
, and Wang
, Y.
, 2002, “An Integrated Gas Sensor Technology Using Surface Micro-Machining
,” Sens. Actuators B
0925-4005, 82
, pp. 277
–283
.25.
Chang
, K.
, Lin
, R.
, and Deng
, I.
, 2007, “Design of Low-Temperature CMOS-Process Compatible Membrane Fabricated With Sacrificial Aluminum Layer for Thermally Isolated Applications
,” Sens. Actuators, A
0924-4247, 134
(2
), pp. 660
–667
.26.
Pham
, H. T. M.
, Bagolini
, A.
, Boer
, C. R.
, Laros
, J. M. W.
, Pakula
, L.
, French
, P. J.
, and Sarro
, P. M.
, 2003, “Polyimide Sacrificial Layer for an All-Dry Post-Process Surface Micromachining Module
,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems
, Boston, MA, Jun. 8–12, pp. 813
–816
.27.
Yan
, G. Z.
, Chan
, P. C. H.
, Hsing
, I. M.
, Sharma
, R. K.
, and Sin
, J. K. O.
, 2000, “An Improved TMAH Si-Etching Solution Without Attacking Exposed Aluminum
,” Proceedings of the 13th IEEE International Micro Electro Mechanical Systems Conference (MEMS 2000)
, Miyazaki, Japan, pp. 562
–567
.28.
Yu
, J.
, Tang
, Z. A.
, Chan
, P. C. H.
, Wei
, G. F.
, Wang
, L. D.
, and Yan
, G. Z.
, 2005, “Thermal Analysis of Silicon Micromachining Based Micro Hotplates
,” Chin. J. Semicond.
0253-4177, 26
(1
), pp. 192
–196
.29.
Cezairliyan
, A.
, Anderson
, A. C.
, Bonnell
, D. W.
, Brooks
, C. R.
, Chasanov
, M. G.
, Ditmars
, D. A.
, Fischer
, D. F.
, Kirby
, R. K.
, Kraftmakher
, Ya. A.
, Leibowitz
, L.
, Loriers-Susse
, C.
, Margrave
, J. L.
, Martin
, D. L.
, Miller
, A. P.
, Montgomery
, R. L.
, Mraw
, S. C.
, Stansbury
, E. E.
, Stephenson
, B.
, Sundareswaran
, P. C.
, and Westrum
, E. F.
, 1988, Specific Heat of Solids
, C. Y.
Ho
, ed., Hemisphere
, New York
, p. 323
.30.
Guinier
, A.
, 1963, X-Ray Diffraction
, W. H. Freeman
, San Francisco, CA
, p. 121
.31.
Touloukian
, Y. S.
, and Buyco
, E. H.
, 1970, Specific Heat: Metallic Elements and Alloys
, IFI/Plenum
, New York
.32.
Rupp
, J.
, and Birringer
, R.
, 1987, “Enhanced Specific-Heat-Capacity (cp) Measurements (150–300 K) of Nanometer-Sized Crystalline Materials
,” Phys. Rev. B
0163-1829, 36
(15
), pp. 7888
–7890
.33.
Lopeandia
, A. F.
, Pi
, F.
, and Rodriguez-Viejo
, J.
, 2008, “Nanocalorimetric Analysis of the Ferromagnetic Transition in Ultrathin Films of Nickel
,” Appl. Phys. Lett.
0003-6951, 92
, p. 122503
.34.
Sun
, N. X.
, and Lu
, K.
, 1996, “Heat-Capacity Comparison Among the Nanocrystalline, Amorphous, and Coarse-Grained Polycrystalline States in Element Selenium
,” Phys. Rev. B
0163-1829, 54
, pp. 6058
–6061
.35.
Balogh
, J.
, Kemeny
, T.
, Vincze
, I.
, Szabo
, S.
, Beke
, D. L.
, and Toth
, J.
, 1999, “Comment on “Grain-Boundary Structure and Magnetic Behavior in Nanocrystalline Ball-Milled Iron”
,” Phys. Rev. B
0163-1829, 59
, pp. 14786
–14787
.36.
Meyer
, R.
, Lewis
, L. J.
, Prakash
, S.
, and Entel
, P.
, 2003, “Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials
,” Phys. Rev. B
0163-1829, 68
, p. 104303
.37.
Zhang
, Y.
, Cao
, J. X.
, Xiao
, Y.
, and Yan
, X. H.
, 2007, “Phonon Spectrum and Specific Heat of Silicon Nanowires
,” J. Appl. Phys.
0021-8979, 102
, pp. 104303
.38.
Zhao
, Y. H.
, and Lu
, K.
, 1997, “Grain-Size Dependence of Thermal Properties of Nanocrystalline Elemental Selenium Studied by X-Ray Diffraction
,” Phys. Rev. B
0163-1829, 56
(22
), pp. 14330
–14337
.39.
Kuru
, Y.
, Wohlschlögel
, M.
, Welzel
, U.
, and Mittemeijer
, E. J.
, 2008, “Coefficients of Thermal Expansion of Thin Metal Films Investigated by Non-Ambient X-Ray Diffraction Stress Analysis
,” Surf. Coat. Technol.
0257-8972, 202
, pp. 2306
–2309
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.