We numerically solve the Navier–Stokes equations to study the rarefied gas flow in short micro- and nanoscale channels. The inlet boundary conditions play a critical role in the structure of flow in short channels. Contrary to the classical inlet boundary conditions, which apply uniform velocity and temperature profiles right at the real channel inlet, we apply the same inlet boundary conditions, but at a fictitious position far upstream of the real channel inlet. A constant wall temperature incorporated with suitable temperature jump is applied at the channel walls. Our solutions for both the classical and extended inlet boundary conditions are compared with the results of other available Navier–Stokes and lattice Boltzmann solvers. It is shown that the current extended inlet boundary conditions can effectively improve the thermofluid flow solutions in short micro- and nanoscale channels.

1.
Kavehpour
,
H. P.
,
Faghri
,
M.
, and
Asako
,
Y.
, 1997, “
Effects of Compressibility and Rarefaction on Gaseous Flows in Microchannels
,”
Numer. Heat Transfer, Part A
,
32
, pp.
677
696
. 1040-7782
2.
Guo
,
Z. Y.
, and
Wu
,
X. B.
, 1998, “
Further Study on Compressibility Effects on the Gas Flow and Heat Transfer in a Microtube
,”
Microscale Thermophys. Eng.
1089-3954,
2
, pp.
111
120
.
3.
Beskok
,
A.
, and
Karniadakis
,
G. E.
, 1994, “
Simulation of Heat and Momentum Transfer in Complex Microgeometries
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
647
655
.
4.
Beskok
,
A.
, and
Karniadakis
,
G. E.
, 1999, “
A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales
,”
Microscale Thermophys. Eng.
1089-3954,
3
, pp.
43
77
.
5.
Asako
,
Y.
, and
Toriyama
,
H.
, 2005, “
Heat Transfer Characteristics of Gaseous Flows in Microchannels
,”
Microscale Thermophys. Eng.
1089-3954,
9
, pp.
15
31
.
6.
Gamrat
,
G.
,
Favre-Marinet
,
M.
, and
Asendrych
,
D.
, 2005, “
Conduction and Entrance Effects on Laminar Liquid Flow and Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2943
2954
. 0017-9310
7.
Hung
,
W. C.
, and
Ru
,
Y.
, 2005, “
A Numerical Study for Slip Flow Heat Transfer
,”
Appl. Math. Comput.
0096-3003,
173
(
2
), pp.
1246
1264
.
8.
Niu
,
X. D.
,
Shu
,
C.
, and
Chew
,
Y. T.
, 2007, “
A Thermal Lattice Boltzmann Model With Diffuse Scattering Boundary Conditions for Micro Thermal Flows
,”
Comput. Fluids
,
36
, pp.
273
281
. 0045-7930
9.
Darbandi
,
M.
, and
Schneider
,
G. E.
, 1998, “
Numerical Study of the Flow Behavior in the Uniform Velocity Entry Flow Problem
,”
Numer. Heat Transfer, Part A
,
34
, pp.
479
494
. 1040-7782
10.
Darbandi
,
M.
, and
Hosseinizadeh
,
S. F.
, 2004, “
Remarks on Numerical Prediction of Wall Shear Stress in Entry Flow Problems
,”
Commun. Numer. Methods Eng.
,
20
, pp.
619
625
. 1069-8299
11.
Darbandi
,
M.
, and
Vakilipour
,
S.
, 2007, “
Developing Consistent Inlet Boundary Conditions to Study the Entrance Zone in Microchannels
,”
J. Thermophys. Heat Transfer
0887-8722,
21
(
3
), pp.
596
607
.
12.
Darbandi
,
M.
, and
Schneider
,
G. E.
, 1998, “
Analogy-Based Method for Solving Compressible and Incompressible Flows
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
2
), pp.
239
247
.
13.
Darbandi
,
M.
,
Roohi
,
E.
, and
Mokarizadeh
,
V.
, 2008, “
Conceptual Linearization of Euler Governing Equations to Solve High Speed Compressible Flow Using a Pressure-Based Method
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
24
(
2
), pp.
583
604
.
14.
Darbandi
,
M.
, and
Vakilipour
,
S.
, 2008, “
Developing Implicit Pressure-Weighted Upwinding Scheme to Calculate Steady and Unsteady Flows on Unstructured Grids
,”
Int. J. Numer. Methods Fluids
0271-2091,
56
(
2
), pp.
115
141
.
15.
Darbandi
,
M.
, and
Vakilipour
,
S.
, 2007, “
Using Fully Implicit Conservative Statements to Close Open Boundaries Passing Through Recirculations
,”
Int. J. Numer. Methods Fluids
,
53
(
3
), pp.
371
389
. 0271-2091
16.
Darbandi
,
M.
, and
Hosseinizadeh
,
S. F.
, 2006, “
Numerical Simulation of Thermobuoyant Flow With Large Temperature Variation
,”
J. Thermophys. Heat Transfer
0887-8722,
20
(
2
), pp.
285
296
.
You do not currently have access to this content.