Today’s electronic and optoelectronic devices are plagued by heat transfer issues. As device dimensions shrink and operating frequencies increase, ever-increasing amounts of thermal energy are being generated in smaller and smaller volumes. As devices shrink to length scales on the order of carrier mean free paths, thermal transport is no longer dictated by the thermal properties of the materials comprising the devices, but rather the transport of energy across the interfaces between adjacent materials in the devices. In this paper, current theories and experiments concerning phonon scattering processes driving thermal boundary conductance (hBD) are reviewed. Experimental studies of thermal boundary conductance conducted with the transient thermoreflectance technique challenging specific assumptions about phonon scattering during thermal boundary conductance are presented. To examine the effects of atomic mixing at the interface on hBD, a series of Cr/Si samples was fabricated subject to different deposition conditions. The varying degrees of atomic mixing were measured with Auger electron spectroscopy. Phonon scattering phenomena in the presence of interfacial mixing were observed with the trends in the Cr/Si hBD. The experimental results are reviewed and a virtual crystal diffuse mismatch model is presented to add insight into the effect of interatomic mixing at the interface. The assumption that phonons can only transmit energy across the interface by scattering with a phonon of the same frequency—i.e., elastic scattering, can lead to underpredictions of hBD by almost an order of magnitude. To examine the effects of inelastic scattering on hBD, a series of metal/dielectric interfaces with a wide range of vibrational similarity is studied at temperatures above and around materials’ Debye temperatures. Inelastic scattering is observed and new models are developed to predict hBD and its relative dependency on elastic and inelastic scattering events.

1.
Foster
,
L. E.
, 2006,
Nanotechnology: Science, Innovation, and Opportunity
,
Pearson Education, Inc.
,
Upper Saddle River, NJ
.
2.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
, pp.
793
818
.
3.
Tien
,
C. L.
,
Majumdar
,
A.
, and
Gerner
,
F. M.
, 1998,
Microscale Energy Transport
,
Taylor and Francis
,
Washington, DC
.
4.
Majumdar
,
A.
, 1993, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
7
16
.
5.
Kapitza
,
P. L.
, 1941, “
The Study of Heat Transfer in Helium II
,”
Zh. Eksp. Teor. Fiz. Pis'ma Red.
,
11
, pp.
1
31
. 0044-4510
6.
Stevens
,
R. J.
,
Smith
,
A. N.
, and
Norris
,
P. M.
, 2005, “
Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
315
322
.
7.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1987, “
Thermal Resistances at Interfaces
,”
Appl. Phys. Lett.
0003-6951,
51
, pp.
2200
2202
.
8.
Chung
,
D. D. L.
, 2001, “
Thermal Interface Materials
,”
J. Mater. Eng. Perform.
,
10
, pp.
56
59
. 1059-9495
9.
Prasher
,
R. S.
, 2006, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
0018-9219,
94
, pp.
1571
1586
.
10.
Singhal
,
V.
,
Siegmund
,
T.
, and
Garimella
,
S. V.
, 2004, “
Optimization of Thermal Interface Materials for Electronics Cooling Applications
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
27
, pp.
244
252
.
11.
Da Silva
,
L. W.
, and
Kaviany
,
M.
, 2004, “
Micro-Thermoelectric Cooler: Interfacial Effects on Thermal and Electrical Transport
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2417
2435
.
12.
Mahan
,
G. D.
, and
Woods
,
L. M.
, 1998, “
Multilayer Thermionic Refrigeration
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
4016
4019
.
13.
Phelan
,
P. E.
,
Song
,
Y.
,
Nakabeppu
,
O.
,
Ito
,
K.
,
Hijikata
,
K.
,
Ohmori
,
T.
, and
Torikoshi
,
K.
, 1994, “
Film/Substrate Thermal Boundary Resistance for an Er-Ba-Cu-O High-TC Thin Film
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
1038
1041
.
14.
Phelan
,
P. E.
, 1998, “
Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-TC Superconductors
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
37
43
.
15.
Chen
,
G.
,
Tien
,
C. L.
,
Wu
,
X.
, and
Smith
,
J. S.
, 1994, “
Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
325
331
.
16.
Kim
,
E. -K.
,
Kwun
,
S. -I.
,
Lee
,
S. -M.
,
Seo
,
H.
, and
Yoon
,
J. -G.
, 2000, “
Thermal Boundary Resistance at Ge2Sb2Te5/ZnS:SiO2 Interface
,”
Appl. Phys. Lett.
0003-6951,
76
, pp.
3864
3866
.
17.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1994, “
Femtosecond Laser Heating of Multi-Layer Metals—I. Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
2789
2797
.
18.
Qiu
,
T. Q.
,
Juhasz
,
T.
,
Suarez
,
C.
,
Bron
,
W. E.
, and
Tien
,
C. L.
, 1994, “
Femtosecond Laser Heating of Multi-Layer Metals—II. Experiments
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
2799
2808
.
19.
Smith
,
A. N.
, and
Calame
,
J. P.
, 2004, “
Impact of Thin Film Thermophysical Properties on Thermal Management of Wide Bandgap Solid-State Transistors
,”
Int. J. Thermophys.
0195-928X,
25
, pp.
409
422
.
20.
Majumdar
,
A.
,
Fushinobu
,
K.
, and
Hijikata
,
K.
, 1995, “
Effect of Gate Voltage on Hot-Electron and Hot-Phonon Interaction and Transport in a Submicrometer Transistor
,”
J. Appl. Phys.
0021-8979,
77
, pp.
6686
6694
.
21.
Zhang
,
Z.
, 2007,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
22.
Chen
,
G.
, 2005,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
New York
.
23.
Gray
,
D. E.
, 1972,
American Institute of Physics Handbook
,
McGraw-Hill
,
New York
.
24.
Cheeke
,
J. D. N.
,
Ettinger
,
H.
, and
Hebral
,
B.
, 1976, “
Analysis of Heat Transfer Between Solids at Low Temperatures
,”
Can. J. Phys.
,
54
, pp.
1749
1771
. 0008-4204
25.
Little
,
W. A.
, 1959, “
The Transport of Heat Between Dissimilar Solids at Low Temperatures
,”
Can. J. Phys.
,
37
, pp.
334
349
. 0008-4204
26.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
605
668
.
27.
Kittel
,
C.
, 1996,
Introduction to Solid State Physics
,
Wiley
,
New York
.
28.
Vincenti
,
W. G.
, and
Kruger
,
C. H.
, 2002,
Introduction to Physical Gas Dynamics
,
Krieger
,
Malabar, FL
.
29.
Snyder
,
N. S.
, 1970, “
Heat Transport Through Helium II: Kapitza Conductance
,”
Cryogenics
0011-2275,
10
, pp.
89
95
.
30.
Stevens
,
R. J.
,
Smith
,
A. N.
, and
Norris
,
P. M.
, 2006, “
Signal Analysis and Characterization of Experimental Setup for the Transient Thermoreflectance Technique
,”
Rev. Sci. Instrum.
0034-6748,
77
, p.
084901
.
31.
Hopkins
,
P. E.
,
Stevens
,
R. J.
, and
Norris
,
P. M.
, 2008, “
Influence of Inelastic Scattering at Metal-Dielectric Interfaces
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
022401
.
32.
Hopkins
,
P. E.
,
Norris
,
P. M.
,
Stevens
,
R. J.
,
Beechem
,
T.
, and
Graham
,
S.
, 2008, “
Influence of Interfacial Mixing on Thermal Boundary Conductance Across a Chromium/Silicon Interface
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
062402
.
33.
Poate
,
J. M.
,
Tu
,
K. N.
, and
Mayer
,
J. W.
, 1978,
Thin Films—Interdiffusion and Reactions
,
Wiley
,
New York
, pp.
1
12
.
34.
Beechem
,
T. E.
,
Graham
,
S.
,
Hopkins
,
P. E.
, and
Norris
,
P. M.
, 2007, “
The Role of Interface Disorder on Thermal Boundary Conductance Using a Virtual Crystal Approach
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
054104
.
35.
Kechrakos
,
D.
, 1991, “
The Role of Interface Disorder in the Thermal Boundary Conductivity Between Two Crystals
,”
J. Phys.: Condens. Matter
0953-8984,
3
, pp.
1443
1452
.
36.
Ren
,
S. -F.
,
Cheng
,
W.
, and
Chen
,
G.
, 2006, “
Lattice Dynamics Investigations of Phonon Thermal Conductivity of Si/Ge Superlattices With Rough Interfaces
,”
J. Appl. Phys.
0021-8979,
100
, p.
103505
.
37.
Stevens
,
R. J.
,
Zhigilei
,
L. V.
, and
Norris
,
P. M.
, 2007, “
Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid-Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
3977
3989
.
38.
Kechrakos
,
D.
, 1990, “
The Phonon Boundary Scattering Cross Section at Disordered Crystalline Interfaces: A Simple Model
,”
J. Phys.: Condens. Matter
0953-8984,
2
, pp.
2637
2652
.
39.
Prasher
,
R. S.
, and
Phelan
,
P. E.
, 2001, “
A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
105
112
.
40.
Kozorezov
,
A. G.
,
Wigmore
,
J. K.
,
Erd
,
C.
,
Peacock
,
A.
, and
Poelaert
,
A.
, 1998, “
Scattering-Mediated Transmission and Reflection of High-Frequency Phonons at a Nonideal Solid-Solid Interface
,”
Phys. Rev. B
0163-1829,
57
, pp.
7411
7414
.
41.
Stoner
,
R. J.
, and
Maris
,
H. J.
, 1993, “
Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K
,”
Phys. Rev. B
0163-1829,
48
, pp.
16373
16387
.
42.
Abeles
,
B.
, 1963, “
Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures
,”
Phys. Rev.
0031-899X,
131
, pp.
1906
1911
.
43.
Majumdar
,
A.
, and
Reddy
,
P.
, 2004, “
Role of Electron-Phonon Coupling in Thermal Conductance of Metal-Nonmetal Interfaces
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4768
4770
.
44.
Kaganov
,
M. I.
,
Lifshitz
,
I. M.
, and
Tanatarov
,
L. V.
, 1957, “
Relaxation Between Electrons and the Crystalline Lattice
,”
Sov. Phys. JETP
,
4
, pp.
173
178
. 0038-5646
45.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Size Effects on Nonequilibrium Laser Heating of Metal Films
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
842
847
.
46.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
835
841
.
47.
Hostetler
,
J. L.
,
Smith
,
A. N.
,
Czajkowsky
,
D. M.
, and
Norris
,
P. M.
, 1999, “
Measurement of the Electron-Phonon Coupling Factor Dependence on Film Thickness and Grain Size in Au, Cr, and Al
,”
Appl. Opt.
0003-6935,
38
, pp.
3614
3620
.
48.
Chen
,
Y.
,
Li
,
D.
,
Yang
,
J.
,
Wu
,
Y.
,
Lukes
,
J.
, and
Majumdar
,
A.
, 2004, “
Molecular Dynamics Study of the Lattice Thermal Conductivity of Kr/Ar Superlattice Nanowires
,”
Physica B
0921-4526,
349
, pp.
270
280
.
49.
Kosevich
,
Y. A.
, 1995, “
Fluctuation Subharmonic and Multiharmonic Phonon Transmission and Kapitza Conductance Between Crystals With Very Different Vibrational Spectra
,”
Phys. Rev. B
0163-1829,
52
, pp.
1017
1024
.
50.
Lyeo
,
H. -K.
, and
Cahill
,
D. G.
, 2006, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
0163-1829,
73
, p.
144301
.
51.
Hopkins
,
P. E.
, and
Norris
,
P. M.
, 2007, “
Effects of Joint Vibrational States on Thermal Boundary Conductance
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
11
, pp.
247
257
.
52.
Hopkins
,
P. E.
, and
Norris
,
P. M.
, 2006, “
Thermal Boundary Conductance Response to a Change in Cr/Si Interfacial Properties
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
131909
.
53.
Hopkins
,
P. E.
, and
Norris
,
P. M.
, 2009, “
Relative Contributions of Inelastic and Elastic Diffuse Phonon Scattering to Thermal Boundary Conductance Across Solid Interfaces
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
022402
.
54.
Huberman
,
M. L.
, and
Overhauser
,
A. W.
, 1994, “
Electronic Kapitza Conductance at a Diamond-Pb Interface
,”
Phys. Rev. B
0163-1829,
50
, pp.
2865
2873
.
You do not currently have access to this content.