This paper aims to study the convective heat transfer behavior of aqueous suspensions of nanodiamond particles flowing through a horizontal tube heated under a constant heat flux condition. Consideration is given to the effects of particle concentration and Reynolds number on heat transfer enhancement. It is found that (i) significant enhancement of heat transfer performance due to suspension of nanodiamond particles in the circular tube flow is observed in comparison with pure water as the working fluid, (ii) the enhancement is intensified with an increase in the Reynolds number and the nanodiamond concentration, and (iii) substantial amplification of heat transfer performance is not attributed purely to the enhancement of thermal conductivity due to suspension of nanodiamond particles.

1.
Maxwell
,
J. C.
, 1881,
A Treatise on Electricity and Magnetism
, Vol.
1
, 2nd ed.,
Clarendon
,
Oxford, UK
, p.
435
.
2.
Choi
,
U. S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Fluids
, Vol.
231
,
D. A.
Springer
and
H. P.
Wang
, eds.,
ASME FED
,
New York
, pp.
6
12
.
3.
Eastman
,
J. A.
,
Choi
,
U. S.
,
Li
,
S.
,
Thompson
,
L. J.
, and
Lee
,
S.
, 1997, “
Enhanced Thermal Conductivity Through the Development of Nano-Fluids
,”
Proceedings of the Symposium on Nanophase and Nanocomposite Materials II
,
Material Research Society
,
Boston, MA
, Vol.
457
, pp.
3
11
.
4.
Lee
,
S. P.
,
Choi
,
U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
288
.
5.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
U. S.
, 1999, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
0887-8722,
13
, pp.
474
480
.
6.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, 2003, “
Pool Boiling Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
851
862
.
7.
Lee
,
S. P.
, and
Choi
,
U. S.
, 1996, “
Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems
,”
Recent Advances in Solids/Structures and Application of Metallic Materials
, Vol.
342
,
Y.
Kwon
,
D.
Davis
, and
H.
Chung
, eds.,
ASME
,
New York
, pp.
227
234
.
8.
Pak
,
B. C.
, and
Choi
,
Y. I.
, 1998, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
0891-6152,
11
, pp.
151
170
.
9.
Xuan
,
Y.
, and
Roetzel
,
W.
, 2000, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3701
3707
.
10.
Xuan
,
Y. M.
, and
Li
,
Q.
, 2003, “
Investigative Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
151
155
.
11.
Wen
,
D.
, and
Ding
,
Y.
, 2004, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5181
5188
.
12.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
, 2006, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
240
250
.
13.
Lee
,
J.
, and
Mudawar
,
I.
, 2007, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
452
463
.
14.
Yang
,
Y.
,
Zhang
,
Z. G.
,
Grulke
,
E. A.
,
Anderson
,
W. B.
, and
Wu
,
G.
, 2005, “
Heat Transfer Properties of Nanoparticle-In-Fluid Dispersions (Nanofluids) in Laminar Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1107
1116
.
15.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
, pp.
187
191
. 0032-3861
16.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
. 0025-6501
17.
Kinloch
,
I. K.
,
Roberts
,
S. A.
, and
Windle
,
A. H.
, 2002, “
A Theological Study of Concentrated Aqueous Nanotube Dispersions
,”
Polymer
0032-3861,
43
, pp.
7483
7491
.
18.
He
,
Y.
,
Jin
,
Y.
,
Chen
,
H.
,
Ding
,
Y.
,
Chang
,
D.
, and
Lu
,
H.
, 2007, “
Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2272
2281
. 0017-9310
19.
Kabelac
,
S.
, and
Kuhnke
,
J. F.
, 1977,
Heat Transfer Mechanisms in Nanofluids: Experiment and Theory
,
Helmut-Schmidt University of the Federal Armed Forces
,
Hamburg, Germany
, pp.
12
18
.
You do not currently have access to this content.