A mathematical model predicting the oscillating motion in an oscillating heat pipe is developed. The model considers the vapor bubble as the gas spring for the oscillating motions including effects of operating temperature, nonlinear vapor bulk modulus, and temperature difference between the evaporator and the condenser. Combining the oscillating motion predicted by the model, a mathematical model predicting the temperature difference between the evaporator and the condenser is developed including the effects of the forced convection heat transfer due to the oscillating motion, the confined evaporating heat transfer in the evaporating section, and the thin film condensation in the condensing section. In order to verify the mathematical model, an experimental investigation was conducted on a copper oscillating heat pipe with eight turns. Experimental results indicate that there exists an onset power input for the excitation of oscillating motions in an oscillating heat pipe, i.e., when the input power or the temperature difference from the evaporating section to the condensing section was higher than this onset value the oscillating motion started, resulting in an enhancement of the heat transfer in the oscillating heat pipe. Results of the combined theoretical and experimental investigation will assist in optimizing the heat transfer performance and provide a better understanding of heat transfer mechanisms occurring in the oscillating heat pipe.

1.
Akachi
,
H.
, 1990, “
Structure of a Heat Pipe
,” U.S. Patent No. 4,921,041.
2.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Choi
,
U. S.
, and
Tirumala
,
M.
, 2006, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
1213
1216
.
3.
Zhang
,
X. M.
,
Xu
,
J. L.
, and
Zhou
,
Z. Q.
, 2004, “
Experimental Study of a Pulsating Heat Pipe Using FC-72, Ethanol, and Water as Working Fluids
,”
Exp. Heat Transfer
0891-6152,
17
, pp.
47
67
.
4.
Park
,
K.
, and
Ma
,
H. B.
, 2007, “
Nanofluid Effect on the Heat Transport Capability in a Well-Balanced Oscillating Heat Pipe
,”
J. Thermophys. Heat Transfer
0887-8722,
21
(
2
), pp.
443
445
.
5.
Kim
,
J. H.
,
Lee
,
W. H.
,
Jung
,
H. S.
, and
Kim
,
J. S.
, 2000, “
Characteristics of Pressure Oscillation in Self-Excited Oscillating Heat Pipe Based on Experimental Study
,”
Sixth International Heat Pipe Symposium
,
Chiang Mai, Thailand
, pp.
263
272
.
6.
Borgmeyer
,
B.
, and
Ma
,
H. B.
, 2007, “
Experimental Investigation of Oscillating Motions in a Flat Plate Pulsating Heat Pipe
,”
J. Thermophys. Heat Transfer
0887-8722,
21
(
2
), pp.
405
409
.
7.
Khandekar
,
S.
, and
Groll
,
M.
, 2003, “
An Insight into Thermo-Hydrodynamic Coupling in Closed Loop Heat Pipes
,”
Int. J. Therm. Sci.
1290-0729,
43
(
1
), pp.
13
20
.
8.
Khandekar
,
S.
,
Nanyam
,
S.
, and
Groll
,
M.
, 2004, “
Two-Phase Flow Modeling in Closed Loop Pulsating Heat Pipes
,”
13th International Heat Pipe Conference
, Sept. 19–25.
9.
Zuo
,
J.
,
North
,
M. T.
, and
Wert
,
K. L.
, 2001, “
High Heat Flux Heat Pipe Mechanism for Cooling of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
(
2
), pp.
220
225
.
10.
Lin
,
L.
,
Ponnappan
,
R.
, and
Leland
,
J.
, 2001, “
Experimental Investigation of Oscillating Heat Pipes
,”
J. Thermophys. Heat Transfer
0887-8722,
15
(
4
), pp.
395
400
.
11.
Qu
,
W.
, and
Ma
,
H. B.
, 2007, “
Theoretical Analysis of Start-up of a Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2309
2316
.
12.
Zhang
,
Y.
, and
Faghri
,
A.
, 2003, “
Oscillatory Flow in Pulsating Heat Pipes With Arbitrary Numbers of Turns
,”
J. Thermophys. Heat Transfer
0887-8722,
17
(
3
), pp.
340
347
.
13.
Zhang
,
Y.
, and
Faghri
,
A.
, 2002, “
Heat Transfer in an Oscillating Heat Pipe With Open End
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
4
), pp.
755
764
.
14.
Ma
,
H. B.
,
Hanlon
,
M. A.
, and
Chen
,
C. L.
, 2006, “
An Investigation of Oscillating Motions in a Miniature Pulsating Heat Pipe
,”
Microfluid. Nanofluid.
1613-4982,
2
(
2
), pp.
171
179
.
15.
Wong
,
T. N.
,
Tong
,
B. Y.
,
Lim
,
S. M.
, and
Ooi
,
K. T.
, 1999, “
Theoretical Modeling of Oscillating Heat Pipe
,”
Proceedings of 11th International Heat Pipe Conference
,
Tokyo, Japan
, pp.
159
163
.
16.
Chen
,
J. C.
, 1966, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Dev.
0196-4305,
5
(
3
), pp.
322
339
.
17.
Zhao
,
T. S.
, and
Cheng
,
P.
, 1998, “
Heat Transfer in Oscillatory Flows
,”
Annual Review of Heat Transfer
,
C. L.
Tien
, ed.,
Begell House, Inc.
,
Redding, CT
, Vol.
IX
, No. 9, pp.
359
42
0.
18.
Wallis
,
G. B.
, 1969,
One-Dimensional Two-Phase Flow
,
McGraw-Hill Book Company
,
New York
.
19.
Peterson
,
G. P.
, 1994,
An Introduction to Heat Pipe: Modeling, Testing, and Applications
,
Wiley
,
New York
.
20.
Yuan
,
H.
,
Oguz
,
H. N.
, and
Prosperetti
,
A.
, 1999, “
Growth and Collapse of a Vapor Bubble in a Small Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
19
), pp.
3643
3657
.
21.
Thomas
,
K. J.
, and
Kim
,
C. J.
, 1998, “
Valveless Pumping Using Traversing Vapor Bubbles in Microchannels
,”
J. Appl. Phys.
0021-8979,
83
(
11
), pp.
5658
5664
.
22.
Kurzweg
,
U. H.
, 1985, “
Enhanced Heat Conduction in Fluids Subjected to Sinusoidal Oscillations
,”
ASME J. Heat Transfer
0022-1481,
107
(
3
), pp.
459
462
.
23.
Kurzweg
,
U. H.
, and
Zhao
,
L. D.
, 1984, “
Heat Transfer by High-Frequency Oscillations: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities
,”
Phys. Fluids
0031-9171,
27
(
11
), pp.
2624
2627
.
You do not currently have access to this content.