A penalty finite element analysis with biquadratic elements has been carried out to investigate natural convection flows within an isosceles triangular enclosure with an aspect ratio of 0.5. Two cases of thermal boundary conditions are considered with uniform and nonuniform heating of bottom wall. The numerical solution of the problem is illustrated for Rayleigh numbers (Ra), 103Ra105 and Prandtl numbers (Pr), 0.026Pr1000. In general, the intensity of circulation is found to be larger for nonuniform heating at a specific Pr and Ra. Multiple circulation cells are found to occur at the central and corner regimes of the bottom wall for a small Prandtl number regime (Pr=0.026−0.07). As a result, the oscillatory distribution of the local Nusselt number or heat transfer rate is seen. In contrast, the intensity of primary circulation is found to be stronger, and secondary circulation is completely absent for a high Prandtl number regime (Pr=0.7–1000). Based on overall heat transfer rates, it is found that the average Nusselt number for the bottom wall is 2 times that of the inclined wall, which is well, matched in two cases, verifying the thermal equilibrium of the system. The correlations are proposed for the average Nusselt number in terms of the Rayleigh number for a convection dominant region with higher Prandtl numbers (Pr=0.7 and 10).

1.
Ridouane
,
E.
, and
Campo
,
A.
, 2006, “
Relationship Between Thermal Convection Intensity and Aspect Ratio of Two Triangular Cavities Inscribed in Horizontal Rectangular Cavities
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
16
(
2–3
), pp.
338
355
.
2.
Omri
,
A.
,
Orfi
,
J.
, and
Ben Nasrallah
,
S.
, 2005, “
Natural Convection Effects in Solar Stills
,”
Desalination
0011-9164,
183
(
1–3
), pp.
173
178
.
3.
Farrow
,
D. E.
, and
Patterson
,
J. C.
, 1994, “
The Daytime Circulation and Temperature Structure in a Reservoir Sidearm
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
13
), pp.
1957
1968
.
4.
Sarris
,
I. E.
,
Lekakis
,
I.
, and
Vlachos
,
N. S.
, 2002, “
Natural Convection in a 2D Enclosure With Sinusoidal Upper Wall Temperature
,”
Numer. Heat Transfer, Part A
1040-7782,
42
(
5
), pp.
513
530
.
5.
Perre
,
P.
, and
May
,
B. K.
, 2001, “
A Numerical Drying Model That Accounts for the Coupling Between Transfers and Solid Mechanics. Case of Highly Deformable Products
,”
Drying Technol.
0737-3937,
19
(
8
), pp.
1629
1643
.
6.
Poulikakos
,
D.
, and
Bejan
,
A.
, 1983, “
The Fluid Dynamics of an Attic Space
,”
J. Fluid Mech.
0022-1120,
131
, pp.
251
269
.
7.
Poulikakos
,
D.
, and
Bejan
,
A.
, 1983, “
Natural Convection Experiments in a Triangular Enclosure
,”
ASME Trans. J. Heat Transfer
0022-1481,
105
, pp.
652
655
.
8.
Karyakin
,
Y. E.
,
Sokovishin
,
Y. A.
, and
Martynenko
,
O. G.
, 1988, “
Transient Natural Convection in Triangular Enclosures
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
1759
1766
.
9.
Holtzman
,
G. A.
,
Hill
,
R. W.
, and
Ball
,
K. S.
, 2000, “
Laminar Natural Convection in Isosceles Triangular Enclosures Heated From Below and Symmetrically Cooled From Above
,”
ASME Trans. J. Heat Transfer
0022-1481,
122
, pp.
485
491
.
10.
Salmun
,
H.
, 1995, “
Convection Patterns in a Triangular Domain
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
351
362
.
11.
Salmun
,
H.
, 1995, “
The Stability of a Single Cell Steady State Solution in a Triangular Enclosure
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
363
369
.
12.
Ridouane
,
E. H.
, and
Campo
,
A.
, 2006, “
Formation of a Pitchfork Bifurcation in Thermal Convection Flow Inside an Isosceles Triangular Cavity
,”
Phys. Fluids
1070-6631,
18
(
7
), Art. No.
074102
.
13.
Akinsete
,
V. A.
, and
Coleman
,
T. A.
, 1982, “
Heat Transfer by Steady Laminar Free Convection in Triangular Enclosures
,”
Int. J. Heat Mass Transfer
0017-9310,
25
, pp.
991
998
.
14.
Asan
,
H.
, and
Namli
,
L.
, 2000, “
Laminar Natural Convection in a Pitched Roof of Triangle Cross-Section: Summer Day Boundary Conditions
,”
Energy Build.
0378-7788,
33
, pp.
69
73
.
15.
Asan
,
H.
, and
Namli
,
L.
, 2001, “
Numerical Simulation of Buoyant Flow in a Roof of Triangular Cross Section Under Winter Day Boundary Conditions
,”
Energy Build.
0378-7788,
33
, pp.
753
757
.
16.
Ridouane
,
E. H.
,
Campo
,
A.
, and
Chang
,
J. Y.
, 2005, “
Natural Convection Patterns in Right-Angled Triangular Cavities With Heated Vertical Sides and Cooled Hypotenuses
,”
ASME Trans. J. Heat Transfer
0022-1481,
127
(
10
), pp.
1181
1186
.
17.
Ridouane
,
E. H.
,
Campo
,
A.
, and
McGarry
,
M.
, 2005, “
Numerical Computation of Buoyant Airflows Confined to Attic Spaces Under Opposing Hot and Cold Wall Conditions
,”
Int. J. Therm. Sci.
1290-0729,
44
(
10
), pp.
944
952
.
18.
Roy
,
S.
, and
Basak
,
T.
, 2005, “
Finite Element Analysis of Natural Convection Flows in a Square Cavity With Non-Uniformly Heated Walls(s)
,”
Int. J. Eng. Sci.
0020-7225,
43
, pp.
668
680
.
19.
Basak
,
T.
,
Roy
,
S.
, and
Balakrishnan
,
A. R.
, 2006, “
Effects of Thermal Boundary Conditions on Natural Convection Flows Within a Square Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
23–24
), pp.
4525
4535
.
20.
Reddy
,
J. N.
, 1993,
An Introduction to the Finite Element Method
,
McGraw-Hill
,
New York
.
21.
Chung
,
T. J.
, 2002,
Computational Fluid Dynamics
,
Cambridge University Press
,
London
, UK.
22.
Batchelor
,
G. K.
, 1993,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
London
, UK.
23.
Jyotsna
,
R.
, and
Vanka
,
S. P.
, 1995, “
Multigrid Calculation of Steady, Viscous-Flow in a Triangular Cavity
,”
J. Comput. Phys.
0021-9991,
122
, pp.
107
117
.
24.
Ganzarolli
,
M. M.
, and
Milanez
,
L. F.
, 1995, “
Natural Convection in Rectangular Enclosures Heated From Below and Symmetrically Cooled From the Sides
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
1063
1073
.
25.
Corcione
,
M.
, 2003, “
Effects of the Thermal Boundary Conditions at the Sidewalls Upon Natural Convection in Rectangular Enclosures Heated From Below and Cooled From Above
,”
Int. J. Therm. Sci.
1290-0729,
42
, pp.
199
208
.
You do not currently have access to this content.