This paper presents the pressure drop data and the analysis of adiabatic CO2 flow in horizontal and vertical smooth and microfin tubes at saturation temperatures around 20°C. The test tubes had 3.48mm inner diameter smooth tube and a 3.51mm melt-down diameter microfin tube. The test was performed over a mass flux range of 200800kgm2s and at saturation temperatures of 25°C and 15°C. The effects of various parameters—mass flux, saturated temperature, and tube diameter—on pressure drop were qualitatively analyzed. The analyses showed that the frictional pressure drop characteristics of vertical two-phase flow were much different from that of the horizontal two-phase flow. The microfin tube can be considered as “very rough tube” having the roughness of “fin height.” The data were compared with several correlations. The existing frictional pressure drop correlation is sufficient to predict the horizontal pressure drop in smooth tube. For the vertical pressure drop, the simple combination of the frictional pressure drop and void fraction model was in comparatively good agreement. However, the qualitative results showed that there were some limits to cover the different mechanisms related to the interfacial shear stress. The average enhancement factors and penalty factors evidenced that it was not always true that the internally finned geometry guaranteed the superior in-tube condensation performance of microfin tube in refrigeration system and air-conditioning systems.

1.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
, 2000, “
Heat Transfer and Pressure Drop During Condensation of Refrigerants Inside Horizontal Enhanced Tubes
,”
Int. J. Refrig.
0140-7007
23
, pp.
4
25
.
2.
Kedzierski
,
M. A.
, and
Goncalves
,
J. M.
, 1999, “
Horizontal Convective Condensation of Alternative Refrigerants Within a Micro-Fin Tube
,”
J. Enhanced Heat Transfer
1065-5131,
6
, pp.
161
178
.
3.
Cavallini
,
A.
,
Censi
,
G.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
G. A.
,
Rossetto
,
L.
, and
Zilio
,
C.
, 2003, “
Condensation Inside and Outside Smooth and Enhanced Tubes—A Review of Recent Research
,”
Int. J. Refrig.
0140-7007,
26
, pp.
373
392
.
4.
Zilly
,
J.
,
Jang
,
J.
, and
Hrnjak
,
P. S.
, 2003, “
Condensation of CO2 at Low Temperatures in Micro-Fin Horizontal Tubes
,”
University of Illinois at Urbana-Champaign
, ACRC Technical Report 49.
5.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
, 1949, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
0360-7275,
45
(
1
), pp.
39
48
.
6.
Soliman
,
M.
,
Schuster
,
J. R.
, and
Berenson
,
P. J.
, 1968, “
A General Heat Transfer Correlation for Annular Flow Condensation
,”
ASME J. Heat Transfer
0022-1481,
90
, pp.
267
276
.
7.
Chisholm
,
D.
, 1967, “
A Theoretical Basis for the Lockhart–Martinelli Correlation for Two-Phase Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
10
, pp.
1767
1778
.
8.
Dukler
,
A. E.
,
Wicks
,
M.
, III
, and
Cleveland
,
R. G.
, 1964, “
Frictional Pressure Drop in Two-Phase Flow: B. An Approach Through Similarity Analysis
,”
AIChE J.
0001-1541,
10
, pp.
44
51
.
9.
Chisholm
,
D.
, 1973, “
Pressure Gradients Due to Friction During the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
16
, pp.
347
358
.
10.
Baroczy
,
C. J.
, 1966, “
A Systematic Correlation for Two-Phase Pressure Drop
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
62
, pp.
232
249
.
11.
Friedel
,
L.
, 1979, “
Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow
,” European Two-Phase Flow Group Meeting, Paper No. E2.
12.
Kuo
,
C. S.
, and
Wang
,
C. C.
, 1996, “
In-Tube Evaporation of HCFC-22 in a 9.52mm Micro-Fin/Smooth Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
12
), pp.
2559
2569
.
13.
Wang
,
C. C.
,
Chiang
,
C. S.
, and
Yu
,
J. G.
, 1998, “
An Experimental Study of In-Tube Evaporation of R-22 Inside a 6.5-mm Smooth Tube
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
259
269
.
14.
Zivi
,
S. M.
, 1964, “
Estimation of Steady-State Steam Void-Fraction by Means of the Principle of Minimum Entropy Production
,”
ASME J. Heat Transfer
0022-1481,
86
, pp.
247
252
.
15.
Friedel
,
L.
, 1980, “
Pressure Drop During Gas/Vapor-Liquid Flow in Pipes
,”
Int. Chem. Eng.
0020-6318,
20
(
3
), pp.
352
367
.
16.
Rouhani
,
Z.
, and
Axelsson
,
E.
, 1970, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Region
,”
Int. J. Heat Mass Transfer
0017-9310,
13
, pp.
383
393
.
17.
Hajal
,
J. E.
,
Thome
,
J. R.
, and
Cavallini
,
A.
, 2003, “
Condensation in Horizontal Tubes, Part 1: Two-Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3349
3363
.
18.
Schlager
,
L. M.
,
Pate
,
M. B.
, and
Bergles
,
A. E.
, 1989, “
Heat Transfer and Pressure Drop During Evaporation and Condensation of R22 in Horizontal Micro-Fin Tubes
,”
Int. J. Refrig.
0140-7007,
12
, pp.
6
14
.
19.
Schlager
,
L. M.
,
Pate
,
M. B.
, and
Bergles
,
A. E.
, 1990, “
Evaporation and Condensation Heat Transfer and Pressure Drop on Horizontal, 12.7-mm Microfin Tubes With Refrigerant 22
,”
ASME J. Heat Transfer
0022-1481
112
, pp.
1041
1047
.
20.
Eckels
,
S. J.
, and
Pate
,
M. B.
, 1991, “
Evaporation and Condensation of HFC-134a and CFC-12 in a Smooth Tube and a Micro-Fin Tube
,”
ASHRAE Trans.
0001-2505,
97
, pp.
71
81
.
21.
Eckels
,
S. J.
, and
Tesene
,
B. A.
, 1999, “
A comparison of R-22, R-134a, R-410a, and R-407C Condensation Performance in Smooth and Enhanced Tubes: Part II, Pressure Drop
,”
ASHRAE Trans.
0001-2505,
105
, pp.
442
452
.
22.
Chamra
,
L. M.
,
Webb
,
R. L.
, and
Randlett
,
M. R.
, 1996, “
Advanced Micro-Fin Tubes for Evaporation
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
9
), pp.
1827
1838
.
23.
Chamra
,
L. M.
,
Webb
,
R. L.
, and
Randlett
,
M. R.
, 1996b, “
Advanced Micro-Fin Tubes for Condensation
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
9
), pp.
1839
1846
.
24.
Jang
,
J.
, and
Hrnjak
,
P. S.
, 2004, “
Condensation of CO2 at Low Temperatures
,” Technical Report ACRC CR-56.
25.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
, 1997, “
Pressure Drop During Condensation and Vaporisation of Refrigerants Inside Enhanced Tubes
,”
Heat Technol.
0392-8764,
15
(
1
), pp.
3
10
.
26.
Kaushik
,
N.
, and
Azer
,
N. Z.
, 1990, “
A General Pressure Drop Correlation for Condensation Inside Internally Finned Tubes
,”
ASHRAE Trans.
0001-2505,
96
, pp.
242
250
.
27.
Nozu
,
S.
,
Katayama
,
H.
,
Nakata
,
H.
, and
Honda
,
H.
, 1998, “
Condensation of a Refrigerant CHC11 in Horizontal Microfin Tubes (Proposal of a Correlation Equation for Frictional Pressure Gradient)
,”
Exp. Therm. Fluid Sci.
0894-1777,
18
, pp.
82
96
.
28.
Newell
,
T. A.
, and
Shah
,
R. K.
, 1999, “
Refrigerant Heat Transfer, Pressure Drop, and Void Fraction Effects in Microfin Tubes
,”
Proceedings of the Second International Symposium Experimentation
, on Two-Phase Flow and Experimentation, Edizioni ETS, Italy, Vol.
3
, pp.
1623
1639
.
29.
Goto
,
M.
,
Inoue
,
N.
, and
Ishiwatari
,
N.
, 2001, “
Condensation and Evaporation Heat Transfer of R410A Inside Internally Grooved Horizontal Tubes
,”
Int. J. Refrig.
0140-7007,
24
(
7
), pp.
628
638
.
30.
McLinden
,
M. O.
,
Klein
,
S.
,
Lemmon
,
E.
, and
Peskin
,
A.
, 1998,
NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP)
, Version 6.0, National Institute of Standards and Technology, Gaithersburg, MD.
31.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
32.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
, 1998, “
Flow Boiling in Horizontal Tubes: Part I—Development of a Diabatic Two-Phase Flow Pattern Map
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
140
147
.
33.
Bergelin
,
O. P.
,
Kegel
,
P. K.
,
Carpenter
,
F. G.
, and
Gazley
,
C.
, Jr.
, 1949, “
Co-Current Gas Liquid Flow. II. Flow in Vertical Tubes
,” Proceedings of Heat Transfer and Fluid Mechanics Institute, pp.
19
28
.
34.
Wongwises
,
S.
, and
Kongkiatwanitch
,
W.
, 2001, “
Interfacial Friction Factor in Vertical Upward Gas-Liquid Annular Two-Phase Flow
,”
Int. Commun. Heat Mass Transfer
0735-1933,
28
(
3
), pp.
323
336
.
35.
Dobson
,
M. K.
, and
Chato
,
J. C.
, 1998, “
Condensation in Smooth Horizontal Tubes
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
193
213
.
36.
Mickley
,
H. S.
,
Ross
,
R. C.
,
Squyers
,
A. L.
, and
Stewart
,
W. E.
, 1954, “
Heat, Mass and Momentum Transfer for Flow Over a Flat Plate With Blowing or Suction
,” Report No. NACA-TN-3208.
37.
Kim
,
Y. J.
,
Jang
,
J.
,
Hrnjak
,
P. S.
, and
Kim
,
M. S.
, 2007, “
Condensation Heat Transfer of Carbon Dioxide Inside Horizontal Smooth and Micro-Fin Tubes at Low Temperatures
,”
ASME J. Heat Transfer
0022-1481, submitted.
You do not currently have access to this content.