A two-dimensional model of a proton exchange membrane fuel cell stack is developed. Taking advantage of the geometrical periodicity of the stack, the model is used to predict the detailed thermal and electrochemical characteristics of the fuel cell. Using recently reported as well as new experimental results, the electrical and thermal contact resistances and modifications in the gas diffusion layer transport properties that develop within the stack in response to changes in the compressive force used to assemble the stack are accounted for. The fuel cell stack performance, reported in terms of its power output and internal temperature distributions, is very sensitive to the compressive load.
1.
Springer
, T. E.
, Zawodzinski
, T. A.
, and Gottesfeld
, S.
, 1991, “Polymer Electrolyte Fuel Cell Model
,” J. Electrochem. Soc.
0013-4651, 138
(8
), pp. 2334
–2342
.2.
Bernardi
, D. M.
, and Vebrugge
, M. W.
, 1992, “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,” J. Electrochem. Soc.
0013-4651, 139
(9
), pp. 2477
–2491
.3.
Zhou
, T.
, and Liu
, H.
, 2001, “A General Three-Dimensional Model for Proton Exchange Membrane Fuel Cells
,” Int. J. Transp. Phenom.
1028-6578, 3
(3
), pp. 177
–198
.4.
Siegel
, N. P.
, Ellis
, M. W.
, Nelson
, D. J.
, and Spakovsky
, M. R.
, 2004, “A Two-Dimensional Computational Model of a PEMFC With Liquid Water Transport
,” J. Power Sources
0378-7753, 128
, pp. 173
–184
.5.
Faghri
, A.
, and Gue
, Z.
, 2005, “Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,” Int. J. Heat Mass Transfer
0017-9310, 48
(19–20
), pp. 3891
–3920
.6.
Ihonen
, J.
, Mikkola
, M.
, and Lindbergh
, G.
, 2004, “Flooding of Gas Diffusion Backing in PEFCs
,” J. Electrochem. Soc.
0013-4651, 151
(8
), pp. A1152
–A1161
.7.
Mishra
, V.
, Yang
, F.
, and Pitchumani
, R.
, 2004, “Measurement and Prediction of Electrical Contact Resistance Between Gas Diffusion Layers and Bipolar Plate for Applications to PEM Fuel Cells
,” ASME J. Fuel Cell Sci. Technol.
1550-624X, 1
, pp. 1
–8
.8.
Barbir
, F.
, Braun
, J.
, and Neutzler
, J.
, 1999, “Properties of Molded Graphite Bi-Polar Plates for PEM Fuel Cell Stacks
,” J. New Mater. Electrochem. Syst.
1480-2422, 2
, pp. 197
–200
.9.
Mathias
, M. F.
, Roth
, J.
, Fleming
, J.
, and Lehnert
, W.
, 2003, “Diffusion Media Materials and Characterisation
,” Handbook of Fuel Cells—Fundamentals, Technology and Applications
, Vol. 3
, Wiley
, New York
, pp. 517
–537
.10.
Birgersson
, E.
, Noponen
, M.
, and Vynnycky
, M.
, 2005, “Analysis of a Two-Phase Non-Isothermal Model for a PEFC
,” J. Electrochem. Soc.
0013-4651, 152
(5
), pp. A1021
–A1034
.11.
Uan-Zo-li
, J. T.
, 2001, “The Effects of Structure, Humidity and Aging on the Mechanical Properties of Polymeric Ionomers for Fuel Cell Applications
,” M.S. thesis, The Virginia Polytechnic Institute and State University, Blacksburg, VA.12.
Berning
, T.
, Lu
, D. M.
, and Djilali
, N.
, 2002, “Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,” J. Power Sources
0378-7753, 106
, pp. 284
–294
.13.
Dagan
, G.
, 1989, Flow and Transport in Porous Formations
, Springer
, New York
.14.
Wang
, L.
, Husar
, A.
, Zhou
, T.
, and Liu
, H.
, 2003, “A Parametric Study of PEM Fuel Cell Performances
,” Int. J. Hydrogen Energy
0360-3199, 28
, pp. 1263
–1272
.15.
Um
, S.
, Wang
, C. Y.
, and Chen
, K. S.
, 2000, “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,” J. Electrochem. Soc.
0013-4651, 147
(12
), pp. 4485
–4493
.16.
Barbir
, F.
, 2005, PEM Fuel Cells
, Elsevier Academic
, New York
, Chap. 2.17.
Incropera
, F. P.
, DeWitt
, D. P.
, Bergman
, T. L.
, and Lavine
, A. S.
, 2007, Fundamentals of Heat and Mass Transfer
, Wiley
, Hoboken, NJ
, Chaps. 8 and 14.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.