Detailed film cooling effectiveness distributions are measured on the leading edge of a rotating gas turbine blade with two rows (pressure-side row and suction-side row from the stagnation line) of holes aligned to the radial axis using the pressure sensitive paint (PSP) technique. Film cooling effectiveness distributions are obtained by comparing the difference of the measured oxygen concentration distributions with air and nitrogen as film cooling gas respectively and by applying the mass transfer analogy. Measurements are conducted on the first-stage rotor blade of a three-stage axial turbine at 2400rpm (positive off-design), 2550rpm (design), and 3000rpm (negative off-design), respectively. The effect of three blowing ratios is also studied. The blade Reynolds number based on the axial chord length and the exit velocity is 200,000 and the total to exit pressure ratio was 1.12 for the first-stage rotor blade. The corresponding rotor blade inlet and outlet Mach numbers are 0.1 and 0.3, respectively. The film cooling effectiveness distributions are presented along with discussions on the influence of rotational speed (off design incidence angle), blowing ratio, and upstream nozzle wakes around the leading edge region. Results show that rotation has a significant impact on the leading edge film cooling distributions with the average film cooling effectiveness in the leading edge region decreasing with an increase in the rotational speed (negative incidence angle).

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
, New York.
2.
Nirmalan
,
N. V.
, and
Hylton
,
L. D.
, 1990, “
An Experimental Study of Turbine Vane Heat Transfer With Leading Edge and Downstream Film Cooling
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
477
487
.
3.
Abuaf
,
N.
,
Bunker
,
R.
, and
Lee
,
C. P.
, 1997, “
Heat Transfer and Film Cooling Effectiveness in a Linear Airfoil Cascade
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
302
309
.
4.
Cruse
,
M. W.
,
Yuki
,
U. M.
, and
Bogard
,
D. G.
, 1997, “
Investigation of Various Parametric Influences on Leading Edge Film Cooling
,” ASME Paper No. 97-GT-296.
5.
Ekkad
,
S. V.
,
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Lee
,
C. P.
, 1997, “
Combined Effect of Grid Turbulence and Unsteady Wake on Film Effectiveness and Heat Transfer Coefficient of a Gas Turbine Blade With Air and CO2 Film Injection
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
594
600
.
6.
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
, 2003, “
Effects of Coolant Density Ratio on Film Cooling Performance on a Vane
,”
Proceedings of ASME Turbo Expo 2003
, Atlanta, GA, June, Paper No. GT2003-38582.
7.
Luckey
,
D. W.
,
Winstanley
,
D. K.
,
Hames
,
G. J.
, and
L’Ecuyer
,
M. R.
, 1977, “
Stagnation Region Gas Film Cooling for Turbine Blade Leading-Edge Applications
,”
AIAA J.
0001-1452,
14
, pp.
494
501
.
8.
Mick
,
W. J.
, and
Mayle
,
R. E.
, 1988, “
Stagnation Film Cooling and Heat Transfer Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
0889-504X,
110
, pp.
66
72
.
9.
Karni
,
J.
, and
Goldstein
,
R. J.
, 1990, “
Surface Injection Effect on Mass Transfer From a Cylinder in Crossflow: A Simulation of Film Cooling in the Leading Edge Region of a Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
418
427
.
10.
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Ou
,
S.
, 1991, “
Influence of High Mainstream Turbulence on Leading Edge Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
843
850
.
11.
Mehendale
,
A. B.
, and
Han
,
J. C.
, 1992, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
707
715
.
12.
Ou
,
S.
,
Mehendale
,
A. B.
, and
Han
,
J. C.
, 1992, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer: Effect of Film Hole Row Location
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
716
723
.
13.
Mehendale
,
A. B.
, and
Han
,
J. C.
, 1993, “
Reynolds Number Effect on Leading Edge Film Effectiveness and Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
15
), pp.
3723
3730
.
14.
Salcudean
,
M.
,
Gartshore
,
I.
,
Zhang
,
K.
, and
Barnea
,
Y.
, 1994, “
Leading Edge Film Cooling of a Turbine Blade Model Through Single and Double Row Injection: Effects of Coolant Density
,” ASME Paper No. 94-GT-2.
15.
Funazaki
,
K.
,
Yokota
,
M.
, and
Yamawaki
,
K.
, 1997, “
The Effect of Periodic Wake Passing on Film Effectiveness of Discrete Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
292
301
.
16.
Ekkad
,
S. V.
,
Han
,
J. C.
, and
Du
,
H.
, 1998, “
Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
799
807
.
17.
Ou
,
S.
, and
Rivir
,
R. B.
, 2001, “
Leading Edge Film Cooling Heat Transfer With High Free Stream Turbulence Using a Transient Liquid Crystal Image Method
,”
Int. J. Heat Mass Transfer
0017-9310,
22
, pp.
614
623
.
18.
Reiss
,
H.
, and
Bölcs
,
A.
, 2000, “
Experimental Study of Showerhead Cooling on a Cylinder Comparing Several Configurations Using Cylindrical and Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
161
169
.
19.
Kim
,
Y. J.
, and
Kim
,
S. M.
, 2004, “
Influence of Shaped Injection Holes on Turbine Blade Leading Edge Film Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
245
256
.
20.
Dring
,
R. P.
,
Blair
,
M. F.
, and
Hoslyn
,
H. D.
, 1980, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
81
87
.
21.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
, 1990, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
488
496
.
22.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1994, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
63
70
.
23.
Zhang
,
L. J.
, and
Fox
,
M.
, 1999, “
Flat Plate Film Cooling Measurement Using PSP and Gas Chromatography Techniques
,”
Proc. Fifth ASME/JSME Joint Thermal Engineering Conference
, San Diego, CA.
24.
Zhang
,
L. J.
,
Baltz
,
M.
,
Pudupatty
,
R.
, and
Fox
,
M.
, 1999, “
Turbine Nozzle Film Cooling Study Using the Pressure Sensitive Paint (PSP) Technique
,” ASME Paper No. 99-GT-196.
25.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
, 2001, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
730
738
.
26.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J. C.
, 2004, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure Sensitive Paint
,”
Proceedings of ASME Turbo Expo 2004
, Paper No. GT-2004-53249.
27.
Mhetras
,
S.
,
Yang
,
H.
,
Gao
,
Z.
, and
Han
,
J. C.
, 2005, “
Film-Cooling Effectiveness on Squealer Rim Walls and Squealer Cavity Floor of a Gas Turbine Blade Tip Using Pressure Sensitive Paint
,”
Proceedings of ASME Turbo Expo 2005
, Paper No. GT 2005-68387.
28.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,”
Proceedings of 2005 ASME Summer Heat Transfer Conference
, Paper No. HT 2005-72363.
29.
Gao
,
Z.
,
Wright
,
L. M.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady PSP and Transient IR Measurement Techniques for Leading Edge Film Cooling
,”
Proceedings of 2005 ASME IMECE Congress and Exposition
, Paper No. IMECE2005-80146.
30.
Schobeiri
,
M. T.
,
Gillaranz
,
J. L.
, and
Johansen
,
E. S.
, 2000, “
Aerodynamic and Performance Studies of a Three Stage High Pressure Research Turbine With 3D Blades, Design Points and Off-Design Experimental Investigations
,”
Proceedings of ASME Turbo Expo 2000
, Paper No. 2000-GT-484.
31.
Schobeiri
,
M. T.
,
Suryanarayanan
,
A.
,
Jermann
,
C.
, and
Neuenschwander
,
T.
, 2004, “
A Comparative Aerodynamic and Performance Study of a Three-Stage High Pressure Turbine With 3D Bowed Blades and Cylindrical Blades
,” ASME Paper No. GT2004-53650.
32.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
, New York.
33.
Liu
,
T.
,
Guille
,
M.
, and
Sullivan
,
J. P.
, 2001, “
Accuracy of Pressure Sensitive Paint
,”
AIAA J.
0001-1452,
39
(
1
), pp.
103
112
.
34.
Yang
,
H.
,
Chen
,
H. C.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2005, “
Numerical Prediction of Film Cooling and Heat Transfer on the Leading Edge of a Rotor Blade With Two Rows Holes in a 1-1/2 Turbine Stage, At and Off Design Conditions
,”
Proceedings of ASME Turbo Expo 2005
, Paper No. GT-2005-68355.
You do not currently have access to this content.