An integral approach of the boundary layer analysis is employed for the modeling of fluid flow around and heat transfer from infinite circular cylinders in power-law fluids. The Von Karman-Pohlhausen method is used to solve the momentum integral equation whereas the energy integral equation is solved for both isothermal and isoflux boundary conditions. A fourth-order velocity profile in the hydrodynamic boundary layer and a third-order temperature profile in the thermal boundary layer are used to solve both integral equations. Closed form expressions are obtained for the drag and heat transfer coefficients that can be used for a wide range of the power-law index, and generalized Reynolds and Prandtl numbers. It is found that pseudoplastic fluids offer less skin friction and higher heat transfer coefficients than dilatant fluids. As a result, the drag coefficients decrease and the heat transfer increases with the decrease in power-law index. Comparison of the analytical models with available experimental/numerical data proves the applicability of the integral approach for power-law fluids.

1.
Cho
,
Y. I.
, and
Hartnett
,
J. P.
, 1985, “
Non-Newtonian Fluids
,”
Handbook of Heat Transfer Applications
, 2nd ed.,
McGraw-Hill
, New York, Chap. 2.
2.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
, 1999, “
Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications
,”
Butterworth-Heinemann
, London.
3.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2005, “
Fluid Flow Around and Heat Transfer From an Infinite Circular Cylinder
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
785
790
.
4.
Acrivos
,
A.
,
Shah
,
M. J.
, and
Petersen
,
E. E.
, 1960, “
Momentum and Heat Transfer in Laminar Boundary-Layer Flows of Non-Newtonian Fluids Past External Surfaces
,”
AIChE J.
0001-1541,
6
, pp.
312
317
.
5.
Schowalter
,
W. R.
, 1960, “
Application of Boundary-Layer Theory to Power-Law Pseudo-Plastic Fluids: Similar Solutions
,”
AIChE J.
0001-1541,
6
, pp.
24
28
.
6.
Shah
,
M. J.
,
Petersen
,
E. E.
, and
Acrivos
,
A.
, 1962, “
Heat Transfer from a Cylinder to a Power-Law Non-Newtonian Fluid
,”
AIChE J.
0001-1541,
8
, pp.
542
549
.
7.
Acrivos
,
A.
,
Shah
,
M. J.
, and
Petersen
,
E. E.
, 1965, “
On Solution of Two-Dimensional Boundary-Layer Flow Equations for Non-Newtonian Power-Law Fluid
,”
Chem. Eng. Sci.
0009-2509,
20
, pp.
101
105
.
8.
Lee
,
S. Y.
, and
Ames
,
W. F.
, 1966, “
Similarity Solutions for Non-Newtonian Fluids
,”
AIChE J.
0001-1541,
12
, pp.
700
708
.
9.
Bizzell
,
G. D.
, and
Slattery
,
J. C.
, 1962, “
Non-Newtonian Boundary-Layer Flow
,”
Chem. Eng. Sci.
0009-2509,
17
, pp.
777
782
.
10.
Wolf
,
C. J.
, and
Szewczyk
,
A. A.
, 1966, “
Laminar Heat Transfer to Non-Newtonian Fluids From Arbitrary Cylinders
,”
Proceedings of the Third IHTC
,
Chicago, IL, August 7–12, Vol.
1
.
11.
Serth
,
R. W.
, and
Kiser
,
K. M.
, 1967, “
A Solution of the Two-Dimensional Boundary-Layer Equations for an Ostwald-de Waele Fluid
,”
Chem. Eng. Sci.
0009-2509,
22
, pp.
945
956
.
12.
Lin
,
F. N.
, and
Chern
,
S. Y.
, 1979, “
Laminar Boundary Layer Flow of Non-Newtonian Fluid
,”
Int. J. Heat Mass Transfer
0017-9310,
22
, pp.
1323
1329
.
13.
Kim
,
H. W.
,
Jeng
,
D. R.
, and
DeWitt
,
K. J.
, 1983, “
Momentum and Heat Transfer in Power-Law Fluid Flow Over Two-Dimensional or Axisymmetrical Bodies
,”
Int. J. Heat Mass Transfer
0017-9310,
26
, pp.
245
259
.
14.
Mizushina
,
T.
, and
Usui
,
H.
, 1978, “
Approximate Solution of the Boundary Layer Equations for the Flow of a Non-Newtonian Fluid Around a Cylinder
,”
Heat Transfer-Jpn. Res.
0096-0802,
7
, pp.
83
92
.
15.
Nakayama
,
A.
,
Shenoy
,
A. V.
, and
Koyama
,
H.
, 1986, “
An Analysis for Forced Convection Heat Transfer From External Surfaces to Non-Newtonian Fluids
,”
Warme-und Stoffubertragung
,
20
, pp.
219
227
.
16.
Shenoy
,
A. V.
, and
Nakayam
,
A.
, 1986, “
Forced Convection Heat Transfer for Axisymmetric Bodies to Non-Newtonian Fluids
,”
Can. J. Chem. Eng.
0008-4034,
64
, pp.
680
686
.
17.
Nakayama
,
A.
, 1986, “
Integral Methods for Forced Convection Heat Transfer in Power-Law Non-Newtonian Fluids
,”
Encyclopedia of Fluid Mechanics: Rheology and Non-Newtonian Flows
,
Gulf
, Houston, Vol.
7
, pp.
305
339
.
18.
Anderson
,
H. I.
, 1988, “
The Nakayama-Koyama Approach to Laminar Forced Convection Heat Transfer to Power-Law Fluids
,”
Int. J. Heat Fluid Flow
0142-727X,
9
, pp.
343
346
.
19.
Luikov
,
A. V.
,
Schulman
,
Z. P.
, and
Berkovsky
,
B. M.
, 1966, “
Heat and Mass Transfer in a Boundary Layer of Non-Newtonian Fluids
,”
Proceedings of the Third IHTC
, Chicago, IL, August 7–12, Vol.
1
.
20.
Luikov
,
A. V.
,
Schulman
,
Z. P.
, and
Puris
,
B. I.
, 1969a, “
Mass Transfer of Cylinder in Forced Flow of Non-Newtonian Viscoelastic Fluid
,”
Heat Transfer-Sov. Res.
0440-5749,
1
, pp.
121
132
.
21.
Luikov
,
A. V.
,
Schulman
,
Z. P.
, and
Puris
,
B. I.
, 1969b, “
External Convective Mass Transfer in Non-Newtonian Fluid
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
377
391
.
22.
James
,
D. F.
, and
Acosta
,
A. J.
, 1970, “
The Laminar Flow of Dilute Polymer Solutions Around Circular Cylinders
,”
J. Fluid Mech.
0022-1120,
42
, pp.
269
288
.
23.
Takashi
,
K.
,
Maeda
,
M.
, and
Ikai
,
S.
, 1977, “
Experimental Study of Heat Transfer from a Cylinder Submerged in a Non-Newtonian Fluid
,”
die dem Nahenungsansatz von K. Pohlhausen genugen, Lilenthal Bericht
,
510
, pp.
335
339
.
24.
Mizushina
,
T.
,
Usui
,
H.
,
Veno
,
K.
, and
Kato
,
T.
, 1978, “
Experiments of Pseudoplastic Fluid Cross Flow Around a Circular Cylinder
,”
Heat Transfer-Jpn. Res.
0096-0802,
7
, pp.
92
101
.
25.
Kumar
,
S.
,
Mall
,
B. K.
, and
Upadhyay
,
S. N.
, 1980, “
On the Mass Transfer in Non-Newtonian Fluids. II. Transfer From Cylinders to Power-Law Fluids
,”
Lett. Heat Mass Transfer
0094-4548,
7
, pp.
55
64
.
26.
Ghosh
,
U. K.
,
Gupta
,
S. N.
,
Kumar
,
S.
, and
Upadhay
,
S. N.
, 1986, “
Mass Transfer in Cross Flow of Non-Newtonian Fluid Around a Circular Cylinder
,”
Int. J. Heat Mass Transfer
0017-9310,
29
, pp.
955
960
.
27.
Rao
,
B. K.
, 2000, “
Heat Transfer to Non-Newtonian Flows Over a Cylinder in Cross Flow
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
693
700
.
28.
Ghosh
,
U. K.
,
Upadhay
,
S. N.
, and
Chhabra
,
R. P.
, 1994, “
Heat and Mass Transfer From Immersed Bodies to Non-Newtonian Fluids
,”
Adv. Heat Transfer
0065-2717,
25
, pp.
251
319
.
29.
Coelho
,
P. M.
, and
Pinho
,
F. T.
, 2003, “
Vortex Shedding in Cylinder Flow of Shear-Thinning Fluids. I. Identification and Demarcation of Flow Regimes
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
110
, pp.
143
176
.
30.
Coelho
,
P. M.
, and
Pinho
,
F. T.
, 2003, “
Vortex Shedding in Cylinder Flow of Shear-Thinning Fluids: II. Flow Characteristics
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
110
, pp.
177
193
.
31.
Coelho
,
P. M.
, and
Pinho
,
F. T.
, 2004, “
Vortex Shedding in Cylinder Flow of Shear-Thinning Fluids: III. Pressure Characteristics
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
121
, pp.
55
68
.
32.
D’Alessio
,
S. J. D.
, and
Pascal
,
J. P.
, 1996, “
Steady Flow of a Power-Law Fluid Past a Cylinder
,”
Acta Mech.
0001-5970,
117
, pp.
87
100
.
33.
Chhabra
,
R. P.
,
Soares
,
A. A.
, and
Ferreira
,
J. M.
, 2004, “
Steady Non-Newtonian Flow Past a Circular Cylinder: A Numerical Study
,”
Acta Mech.
0001-5970,
172
, pp.
1
16
.
34.
Agarwal
,
M.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
, 2002, “
Laminar Momentum and Thermal Boundary Layers of Power-Law Fluids Over a Slender Cylinder
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
1331
1341
.
35.
Khan
,
W. A.
, 2004, “
Modeling of Fluid Flow and Heat Transfer for Optimization of Pin-Fin Heat Sinks
,” Ph.D. thesis, Department of Mechanical Engineering, University of Waterloo, Canada.
36.
Pohlhausen
,
K.
, 1921, “
Zur Näherungsweise Integration der Differential Gleichung der Laminaren Reibungschicht
,”
Z. Angew. Math. Mech.
0044-2267,
1
, pp.
252
268
.
37.
Schlichting
,
H.
, 1979,
Boundary Layer Theory
, 7th ed.,
McGraw-Hill
, New York.
38.
Walz
,
A.
, 1941, “
Ein neuer Ansatz für das Greschwindlig-keitsprofil der laminaren Reibungsschicht
,”
Lilienthal-Bericht
141
, p.
8
.
39.
Shibu
,
S.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
, 2001, “
Power-Law Fluid Flow Over a Bundle of Cylinders at Intermediate Reynolds Numbers
,”
Chem. Eng. Sci.
0009-2509,
56
, pp.
5545
5554
.
40.
Žukauskas
,
A.
, and
Žiugžda
,
J.
, 1985,
Heat Transfer of a Cylinder in Crossflow
,
Hemisphere
, New York.
41.
Fand
,
R. M.
, and
Keswani
,
K. K.
, 1972, “
A Continuous Correlation Equation for Heat Transfer From Cylinders to Air in Crossflow for Reynolds Numbers From 10−2 to 2×105
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
559
562
.
42.
Nakamura
,
H.
, and
Igarashi
,
T.
, 2004, “
Variation of Nusselt Number With Flow Regimes Behind a Circular Cylinder for Reynolds Numbers From 70-30000
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5169
5173
.
43.
Van der Hegge Zijnen
,
B. G.
, 1956, “
Modified Correlation Formulae for Heat Transfer by Natural and Forced Convection From Horizontal Cylinders
,”
Appl. Sci. Res., Sect. A
0365-7132,
6
, pp.
129
140
.
44.
Schönauer
,
W.
, 1964, “
Ein Differenzenverfahren zur Lösung der Grenzschichtgleichung für stationäre, laminare, inkompressible Strömung
,”
Ing.-Arch.
0020-1154,
33
, p.
173
.
45.
Wieselsberger
,
C.
, 1921, “
New Data on The Laws of Fluid Resistance
,” NASA TN No. 84.
46.
Hilpert
,
R.
, 1993, “
Ẅarmeabgabe von Geheizten Drahten und Rohren
,”
Forsch. Geb. Ingenieurwes.
0367-2204,
4
, pp.
215
224
.
47.
McAdams
,
W. H.
, 1942,
Heat Transmission
, 3rd ed.,
McGraw-Hill
, New York.
You do not currently have access to this content.