Abstract

An inverse radiation analysis for simultaneous estimation of the radiative properties and the surface emissivities for a participating medium in between infinitely long parallel planes, from the knowledge of the measured temperatures and heat fluxes at the boundaries, is presented. The differential discrete ordinate method is employed to solve the radiative transfer equation. The present analysis considers three types of simple scattering phase functions. The inverse problem is solved through minimization of a performance function, which is expressed by the sum of squares of residuals between calculated and observed temperatures and heat fluxes at the boundaries. To check the performance and accuracy in retrieval, a comparison is presented between four retrieval methods, viz. Levenberg-Marquardt algorithm, genetic algorithm, artificial neural network, and the Bayesian algorithm. The results of the present analyses indicate that good precision in retrieval could be achieved by using only temperatures and heat fluxes at the boundaries. The study shows that the radiative properties of medium and surface emissivities can be retrieved even with noisy data using Bayesian retrieval algorithm and artificial neural network. Also, the results demonstrate that genetic algorithms are not efficient but are quite robust. Additionally, it is observed that an increase in the error in measurements significantly deteriorates the retrieval using the Levenberg-Marquardt algorithm.

1.
Chandrasekhar
,
S.
, 1950,
Radiative Transfer
,
Oxford University Press
, London.
2.
Fiveland
,
W. A.
, 1987, “
Discrete Ordinate Methods for Radiative Heat Transfer in Isotropically and Anisotropically Scattering Media
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
809
812
.
3.
Stamnes
,
K.
,
Tsay
,
S. C.
,
Wiscombe
,
W.
, and
Jawaweera
,
K.
, 1988, “
Numerically Stable Algorithm for Discrete-Ordinate-Method Radiative Transfer in Multiple Scattering and Emitting Layered Media
,”
Appl. Opt.
0003-6935,
27
, pp.
2502
2509
.
4.
Kumar
,
S.
,
Majumdar
,
A.
, and
Tien
,
C. L.
, 1990, “
The Differential-Discrete-Ordinate Method for Solutions of the Equation of Radiative Transfer
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
424
429
.
5.
Qin
,
Y.
,
Jupp
,
D. L. B.
, and
Box
,
M. A.
, 2002, “
Extension of the Discrete-Ordinate Algorithm and Efficient Radiative Transfer Calculation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
74
, pp.
767
781
.
6.
Li
,
H. Y.
, and
Ozisik
,
M. N.
, 1992, “
Identification of the Temperature Profile in an Absorbing, Emitting, and Isotropically Scattering Medium by Inverse Analysis
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
1060
1063
.
7.
Zhou
,
H. C.
,
Yuan
,
P.
,
Sheng
,
F.
, and
Zheng
,
C. G.
, 2000, “
Simultaneous Estimation of the Profiles of the Temperature and the Scattering Albedo in an Absorbing, Emitting, and Isotropically Scattering Medium by Inverse Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
4361
4364
.
8.
Liu
,
L. H.
,
Tan
,
H. P.
, and
Yu
,
Q. Z.
, 2001, “
Inverse Radiation Problem of Sources and Emissivities in One-Dimensional Semitransparent Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
63
72
.
9.
Silva Neto
,
A. J.
, and
Ozisik
,
M. N.
, 1995, “
An Inverse Problem of Simultaneous Estimation of Radiation Phase Function, Albedo and Optical Thickness
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
53
, pp.
397
409
.
10.
Hendricks
,
T. J.
, and
Howell
,
J. R.
, 1996, “
Absorption, Scattering Coefficients and Scattering Phase Functions in Reticulated Porous Ceramics
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
79
87
.
11.
Li
,
H. Y.
, and
Yang
,
C. Y.
, 1997, “
A Genetic Algorithm for Inverse Radiation Problems
,”
Int. J. Heat Mass Transfer
0017-9310,
80
, pp.
1547
1549
.
12.
Liu
,
L. H.
,
Tan
,
H. P.
, and
Yu
,
Q. Z.
, 1999, “
Simultaneous Identification of Temperature Profile and Wall Emissivities in One-Dimensional Semitransparent Medium by Inverse Radiation Analysis
,”
Numer. Heat Transfer, Part A
1040-7782,
36
, pp.
511
525
.
13.
Park
,
H. M.
, and
Yoon
,
T. Y.
, 2000, “
Solution of the Inverse Radiation Problem Using a Conjugate Gradient Method
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
1767
1776
.
14.
Franca
,
F.
,
Morales
,
J. C.
,
Oguma
,
M.
, and
Howell
,
J. R.
, 1998, “
Inverse Design of Thermal Systems with Radiation
,”
Proc. 11th International Heat Transfer Conf.
,
Kyongju, Korea
,
1
, pp.
213
221
.
15.
McCormick
,
N. J.
, 1992, “
Inverse Radiative Transfer Problems: a Review
,”
Nucl. Sci. Eng.
0029-5639,
112
, pp.
185
198
.
16.
Levenberg
,
K. A.
, 1944, “
Method for the Solution of Certain Non-Linear Problems in Least Squares
,”
Q. Appl. Math.
0033-569X,
2
, pp.
164
168
.
17.
Marquardt
,
D. W.
, 1963, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
0368-4245,
11
, pp.
431
441
.
18.
Hanke
,
M. A.
, 1997, “
Regularizing Levenberg-Marquardt Scheme, with Applications to Inverse Groundwater Iteration Problems
,”
Inverse Probl.
0266-5611,
13
, pp.
79
95
.
19.
Holland
,
J. H.
, 1962, “
Outline for a Logical Theory of Adaptive Systems
,”
J. Assoc. Comput. Mach.
0004-5411,
3
, pp.
297
314
.
20.
Goldberg
,
D. E.
, and
Deb
,
K.
, 1991, “
A comparative analysis of selection schemes used in genetic algorithms
,” in
Foundations of Genetic Algorithms
,
G. J. E.
Rawlins
, (eds.),
Morgan Kaufmann
, San Mateo, CA, pp.
69
93
.
21.
Tsintikidis
,
D.
,
Haferman
,
J. L.
,
Anagnostou
,
E. N.
,
Krajewski
,
W. F.
, and
Smith
,
T. F.
, 1997, “
A Neural Network Approach to Estimating Rainfall from Spaceborne Microwave Data
,”
IEEE Trans. Geosci. Remote Sens.
0196-2892,
35
, pp.
1079
1092
.
22.
Peterson
,
C.
,
Rognvaldsson
,
T.
, and
Lonnblad
,
L.
, 1994, “
JETNET 3.0-a Versatile Artificial Neural Network Package
,”
Comput. Phys. Commun.
0010-4655,
81
, pp.
185
220
.
23.
McFarlane
,
S. A.
,
Evans
,
K. F.
, and
Ackerman
,
A. S.
, 2002, “
A Bayesian Algorithm for the Retrieval of Liquid Water Cloud Properties from Microwave Radiometer and Millimeter Radar Data
,”
J. Geophys. Res.
0148-0227,
107
, Article no. 4317.
24.
Sivia
,
D. S.
, 1996,
Data Analysis: A Bayesian Tutorial
,
Clarendon
, Oxford, England.
25.
Bernardo
,
J. M.
, and
Smith
,
A. F. M.
, 1994,
Bayesian Theory
,
Wiley
, New York.
26.
Pereyra
,
Victor
, 1978, “
PASVA3: An adaptive finite-difference FORTRAN program for first order nonlinear boundary value problems
,” in
Lecture Notes in Computer Science
,
Springer-Verlag
, Berlin, Vol.
76
, pp.
67
88
.
27.
Siegel
,
R.
, and
Howell
,
J. R.
, 2001,
Thermal Radiation Heat Transfer
, 4th ed.,
Taylor and Francis-Hemisphere
, Washington.
28.
Carroll
,
D. L.
, 1996,
Genetic Algorithms and Optimizing Chemical Oxygen-Iodine Lasers, Developments in Theoretical and Applied Mechanics
,
Wilson
,
H. B.
,
Batra
,
R. C.
,
Bert
,
C. W.
,
Davis
,
A. M. J.
,
Schapery
,
R. A.
,
Stewart
,
D. S.
, and
Swinson
,
F. F.
, eds.,
School of Engineering, The University of Alabama
, Vol.
18
, pp.
411
424
.
29.
Heaslet
,
M. A.
, and
Warming
,
R. F.
, 1965, “
Radiative Transport and Wall Temperature Slip in an Absorbing Planar Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
8
, pp.
979
994
.
30.
Swaminathan
,
V.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
, 2004, “
Parameter Estimation in a Two-Layer Planar Gray Participating Medium
,”
J. Thermophys. Heat Transfer
0887-8722,
18
, pp.
187
192
.
You do not currently have access to this content.