Abstract

An experimental test program is described for the measurement of natural convection for an isothermal, heated sphere centrally located in an isothermal, cooled spherical enclosure. A transient test method is used in a reduced pressure environment to provide data for a wide range of Rayleigh number, from the limiting case of laminar boundary layer convection to the diffusive limit. Tests are performed using a fixed outer diameter for four different inner sphere diameters, resulting in diameter ratios in the range 1.5dodi4.8. The data are in excellent agreement with the exact solution for the conductive limit and are shown to be bounded by a model for the isolated, isothermal sphere.

1.
Bishop
,
E. H.
,
Mack
,
L. R.
, and
Scanlan
,
J. A.
, 1966, “
Heat Transfer by Natural Convection Between Concentric Spheres
,”
Int. J. Heat Mass Transfer
0017-9310,
9
(
7
), pp.
649
662
.
2.
Scanlan
,
J. A.
,
Bishop
,
E. H.
, and
Powe
,
R. E.
, 1970, “
Natural Convection Heat Transfer Between Concentric Spheres
,”
Int. J. Heat Mass Transfer
0017-9310,
13
(
12
), pp.
1857
1872
.
3.
Weber
,
N.
,
Powe
,
R. E.
,
Bishop
,
E. H.
, and
Scanlan
,
J. A.
, 1973, “
Heat Transfer by Natural Convection Between Vertically Eccentric Spheres
,”
ASME Trans. J. Heat Transfer
0022-1481,
95
(
1
), pp.
47
52
.
4.
Powe
,
R. E.
,
Warrington
,
R. O.
, and
Scanlan
,
J. A.
, 1980, “
Natural Convective Flow Between a Body and its Spherical Enclosure
,”
Int. J. Heat Mass Transfer
0017-9310,
23
(
10
), pp.
1337
1350
.
5.
Mack
,
L. R.
, and
Hardee
,
H. C.
, 1968, “
Natural Convection between Concentric Spheres at Low Rayleigh Numbers
,”
Int. J. Heat Mass Transfer
0017-9310,
11
(
3
), pp.
387
396
.
6.
Astill
,
K. N.
,
Leong
,
H.
, and
Martorana
,
R.
, 1980, “
A Numerical Solution for Natural Convection in Concentric Spherical Annuli
,”
Natural Convection in Enclosures
, ASME-HTD Vol.
8
,
K. E.
Torrance
and
I.
Catton
, eds
ASME
, New York, pp.
105
113
.
7.
Caltagirone
,
J.-P.
,
Combarnous
,
M.
, and
Mojtabi
,
A.
, 1980, “
Natural Convection between Two Concentric Spheres: Transition toward a Multicellular Flow
,”
Numer. Heat Transfer
0149-5720,
3
(
1
), pp.
107
114
.
8.
Singh
,
S. H.
, and
Chen
,
J.
, 1980, “
Numerical Solution for Free Convection between Concentric Spheres at Moderate Grashof Numbers
,”
Numer. Heat Transfer
0149-5720,
3
(
4
), pp.
441
459
.
9.
Ingham
,
D. B.
, 1981, “
Heat Transfer by Natural Convection between Spheres and Cylinders
,”
Numer. Heat Transfer
0149-5720,
4
(
1
), pp.
53
67
.
10.
Wright
,
J. L.
, and
Douglass
,
R. W.
, 1986, “
Natural Convection in Narrow-gap, Spherical Annuli
,”
Int. J. Heat Mass Transfer
0017-9310,
29
(
5
), pp.
725
739
.
11.
Fujii
,
M.
,
Takamatsu
,
H.
, and
Fujii
,
T.
, 1987, “
A Numerical Analysis of Free Convection around an Isothermal Sphere (Effects of Space and Prandtl Number)
,”
Proceedings of the 1987 ASME/JSME Thermal Engineering Joint Conference
,
P. J.
Marto
and
I.
Tanasawa
, eds.,
JSME
, Tokyo, Vol.
4
, pp.
55
60
.
12.
Garg
,
V. K.
, 1992, “
Natural Convection between Concentric Spheres
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
8
), pp.
1935
1945
.
13.
Chu
,
H-S.
, and
Lee
,
T-S.
, 1993, “
Transient Natural Convection Heat Transfer between Concentric Spheres
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
13
), pp.
3159
3170
.
14.
Chiu
,
C. P.
, and
Chen
,
W. R.
, 1996, “
Transient Natural Convection Heat Transfer between Concentric and Vertically Eccentric Spheres
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
7
), pp.
1439
1452
.
15.
Saunders
,
O. A.
, 1936, “
The Effect of Pressure on Natural Convection in Air
,”
Proc. R. Soc. London, Ser. A
0950-1207,
157
, pp.
278
291
.
16.
Hollands
,
K. G. T.
, 1988, “
Direct Measurement of Gaseous Natural Convection Heat Fluxes
,”
Proc. First World Conf. Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
,
R. K.
Shah
,
E. N.
Ganic
, and
K. T.
Yang
, eds., Sept. 4–9,
Dubrovnik, Yugoslavia
,
Elsevier
,
New York
, pp.
160
168
.
17.
Yovanovich
,
M. M.
, 1998, “
Conduction and Thermal Contact Resistances (Conductances)
,”
Handbook of Heat Transfer
, 3rd. ed.,
W. M.
Rohsenow
,
J. P.
Harnett
, and
Y.
Cho
, eds.,
McGraw Hill
, New York, Chap. 3, pp.
3.1
3.73
.
18.
Kennard
,
E. H.
, 1938,
Kinetic Theory of Gases
,
McGraw Hill
, New York.
19.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
, New York, pp.
96
99
, 114–118.
20.
Raithby
,
G. D.
, and
Hollands
,
K. G. T.
, 1998, “
Natural Convection
,”
Handbook of Heat Transfer
, 4th ed.,
W. M.
Rohsenow
,
J. P.
Hartnett
, and
Y.
Cho
, eds.,
McGraw Hill
, NY, Chap. 4.
21.
Sparrow
,
E. M.
, 1976, “
Error Estimates in Temperature Measurement
,”
Measurements in Heat Transfer
, 2nd ed.
E. R. G.
Eckert
and
R. J.
Goldstein
, eds.,
Hemisphere
, Washington, pp.
3
6
.
22.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
23.
Lee
,
S.
,
Yovanovich
,
M. M.
, and
Jafarpur
,
K.
, 1991, “
Effects of Geometry and Orientation on Laminar Natural Convection Heat Transfer from Isothermal Bodies
,”
J. Thermophys. Heat Transfer
0887-8722,
5
, pp.
208
216
.
You do not currently have access to this content.