A theoretical model of exergy balance, based on availability transfer and flow availability, in the process of pulverized coal combustion in a tubular air-coal combustor has been developed to evaluate the total thermodynamic irreversibility and second law efficiency of the process at various operating conditions. The velocity, temperature, and concentration fields required for the evaluation of flow availability have been computed numerically from a two-phase separated flow model on a Eulerian-Lagrangian frame in the process of combustion of pulverized coal particles in air. The total thermodynamic irreversibility in the process has been determined from the difference in the flow availability at the inlet and outlet of the combustor. A comparative picture of the variations of combustion efficiency and second law efficiency at different operating conditions, such as inlet pressure and temperature of air, total air flow rate and inlet air swirl, initial mean particle diameter, and length of the combustor, has been provided to shed light on the trade-off between the effectiveness of combustion and the lost work in the process of pulverized coal combustion in a tubular combustor.

1.
Smoot
,
L. D.
, 1997, “
A Decade of Combustion Research
,”
Prog. Energy Combust. Sci.
0360-1285,
23
, pp.
203
232
.
2.
Smoot
,
L. D.
, 1984, “
Modeling of Coal Combustion Processes
,”
Prog. Energy Combust. Sci.
0360-1285,
10
, pp.
229
272
.
3.
Flagan
,
R. C.
, and
Taylor
,
D. D.
, 1981, “
Laboratory Studies of Submicron Particles From Coal Combustion
,”
Eighteenth Symposium (International) on Combustion
,
The Combustion Institute
, pp.
1227
1237
.
4.
McLean
,
W. J.
,
Hardesty
,
D. R.
, and
Pohl
,
J. H.
, 1981, “
Direct Observations of Devolatilizing Pulverized Coal Particles in a Combustion Environment
,”
Eighteenth Symposium (International) on Combustion
,
The Combustion Institute
, pp.
1239
1248
.
5.
Seeker
,
W. R.
,
Samuelsen
,
G. S.
,
Heap
,
M. P.
, and
Trolinger
,
J. D.
, 1981, “
The Thermal Decomposition of Pulverized Coal Particles
,”
Eighteenth Symposium (International) on Combustion
,
The Combustion Institute
, pp.
1213
1226
.
6.
Neville
,
M.
,
Quann
,
R. J.
,
Haynes
,
B. S.
, and
Sarofim
,
A. F.
, 1981, “
Vaporization and Condensation of Mineral Matter during Pulverized Coal Combustion
,”
Eighteenth Symposium (International) on Combustion
,
The Combustion Institute
, pp.
1267
1274
.
7.
Ragland
,
K. W.
,
Jehn
,
T. C.
, and
Yang
,
J. T.
, 1981, “
Coal Combustion at High Reynolds Number
,”
Eighteenth Symposium (International) on Combustion
,
The Combustion Institute
, pp.
1295
1303
.
8.
Rees
,
D. P.
,
Smoot
,
L. D.
, and
Hedman
,
P. O.
, 1981, “
Nitrogen Oxide Formation Inside a Laboratory Pulverized Coal Combustor
,”
Eighteenth Symposium (International) on Combustion
,
The Combustion Institute
, pp.
1305
1311
.
9.
Kelly
,
J. T.
,
Brown
,
B. A.
, and
Wightman
,
J. B.
, 1981, “
Pilot-Scale Development of a Low-NOx Coal-Fired Tangential System
,”
Eighteenth Symposium (International) on Combustion
,
The Combustion Institute
, pp.
1275
1283
.
10.
Lester
,
T. W.
,
Seeker
,
W. R.
, and
Merklin
,
J. F.
, 1981, “
The Influence of Oxygen and Total Pressure on the Surface Oxidation Rate of Bituminous Coal
,”
Eighteenth Symposium (International) on Combustion
,
The Combustion Institute
, pp.
1257
1265
.
11.
Smith
,
P. J.
,
Fletcher
,
T. H.
, and
Smoot
,
L. D.
, 1981, “
Model for Pulverized Coal-Fired Reactors
,”
Eighteenth Symposium (International) on Combustion
,
The Combustion Institute
, pp.
1285
1293
.
12.
Williams
,
A.
,
Pourkashanian
,
M.
,
Jones
,
J. M.
, and
Rowlands
,
L.
, 1997, “
A Review of NOx Formation and Reduction Mechanisms in Combustion Systems, With Particular Reference to Coal
,”
J. Inst. Energy
0144-2600,
70
, pp.
102
113
.
13.
Williams
,
A.
,
Backreedy
,
R.
,
Habib
,
R.
,
Jones
,
J. M.
, and
Pourkashanian
,
M.
, 2002, “
Modelling Coal Combustion: The Current Position
,”
Fuel
0016-2361,
81
, pp.
605
618
.
14.
Williams
,
A.
,
Pourkashanian
,
M.
, and
Jones
,
J. M.
, 2001, “
Combustion of Pulverized Coal and Biomass
,”
Prog. Energy Combust. Sci.
0360-1285,
27
, pp.
587
610
.
15.
Arenillas
,
A.
,
Bakreedy
,
R. I.
,
Jones
,
J. M.
,
Pis
,
J. J.
,
Pourkashanian
,
M.
,
Rubiera
,
F.
, and
Williams
,
A.
, 2002, “
Modelling of NO Formation in the Combustion of Coal Blends
,”
Fuel
0016-2361,
81
, pp.
627
636
.
16.
Görres
,
J.
,
Schnell
,
U.
, and
Hein
,
K. R. G.
, 1995, “
Trajectories of Burning Coal Particles in Highly Swirling Reactive Flows
,”
Int. J. Heat Fluid Flow
0142-727X,
16
, pp.
440
450
.
17.
Hurt
,
R.
,
Sun
,
J. K.
, and
Lunden
,
M.
, 1998, “
A Kinetic Model of Carbon Burnout in Pulverized Coal Combustion
,”
Combust. Flame
0010-2180,
113
, pp.
181
197
.
18.
Liakos
,
H. H.
,
Theologos
,
K. N.
,
Boudouvis
,
A. G.
, and
Markatos
,
N. C.
, 1998, “
Pulverized Coal Char Combustion: The Effect of Particle Size on Burner Performance
,”
Appl. Therm. Eng.
1359-4311,
18
, pp.
981
989
.
19.
Fan
,
J.
,
Qian
,
L.
,
Ma
,
Y.
,
Sun
,
P.
, and
Cen
,
K.
, 2001, “
Computational Modeling of Pulverized Coal Combustion Processes in Tangentially Fired Furnaces
,”
Chem. Eng. J.
0300-9467,
81
, pp.
261
269
.
20.
Li
,
Z. Q.
,
Wei
,
F.
, and
Jin
,
Y.
, 2003, “
Numerical Simulation of Pulverized Coal Combustion and NO Formation
,”
Chem. Eng. Sci.
0009-2509,
58
, pp.
5161
5171
.
21.
Akoi
,
H.
,
Nogami
,
H.
,
Tsuge
,
H.
,
Miura
,
T.
, and
Furukawa
,
T.
, 1993, “
Simulation of Transport Phenomena Around the Raceway Zone in the Blast Furnace With and Without Pulverized Coal Injection
,”
ISIJ Int.
0915-1559,
33
(
6
), pp.
646
654
.
22.
Guo
,
Y. C.
,
Chan
,
C. K.
, and
Lau
,
K. S.
, 2003, “
Numerical Studies of Pulverized Coal Combustion in a Tubular Coal Combustor With Slanted Oxygen Jet
,”
Fuel
0016-2361,
82
, pp.
893
907
.
23.
Gordon
,
Y.
,
Shvidkiy
,
V.
,
Yaroshenko
,
Y.
,
Spirin
,
N.
,
Lavrov
,
V.
, and
Shvidkiy
,
D.
, 1998, “
Blast Furnace Models to Analyze Raceway Zone Formation and to Predict Lining Life
,”
ICSTI/Ironmaking Conference Proceedings
, pp.
351
361
.
24.
Dash
,
S. K.
,
Sengupta
,
S. P.
, and
Som
,
S. K.
, 1991, “
Transport Processes and Associated Irreversibilities in Droplet Evaporation
,”
J. Thermophys. Heat Transfer
0887-8722,
5
(
3
),
366
373
.
25.
Dash
,
S. K.
, and
Som
,
S. K.
, 1991, “
Transport Processes and Associated Irreversibilities in Droplet Combustion in a Convective Medium
,”
Int. J. Energy Res.
0363-907X,
15
, pp.
603
619
.
26.
Puri
,
I. K.
, 1992, “
Second Law Analysis of Convective Droplet Burning
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
2571
.
27.
Hiwase
,
S. D.
,
Datta
,
A.
, and
Som
,
S. K.
, 1998, “
Entropy Balance and Exergy Analysis in the Process of Droplet Combustion
,”
J. Phys. D
0022-3727,
31
, pp.
1601
1610
.
28.
Som
,
S. K.
, and
Dash
,
S. K.
, 1993, “
Thermodynamics of Spray Evaporation
,”
J. Phys. D
0022-3727,
26
,
574
584
.
29.
Dunbar
,
W. R.
, and
Lior
,
N.
, 1994, “
Sources of Combustion Irreversibility
,”
Combust. Sci. Technol.
0010-2202,
103
, pp.
41
.
30.
Datta
,
A.
, and
Som
,
S. K.
, 1999, “
Thermodynamic Irreversibilities and Second Law Analysis in a Spray Combustion Process
,”
Combust. Sci. Technol.
0010-2202,
142
, pp.
29
54
.
31.
Som
,
S. K.
, and
Sharma
,
N. Y.
, 2002, “
Energy and Exergy Balance in the Process of Spray Combustion in a Gas Turbine Combustor
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
828
836
.
32.
Lior
,
N.
, 2001, “
Irreversibility in Combustion, Invited Keynote Paper Proc. ECOS ’01: Efficiency, Costs, Optimization, Simulation and Environmental Aspects of Energy Systems
,”
Istanbul
, Turkey, Vol.
1
, pp.
39
48
.
33.
Kim
,
C.
, and
Lior
,
N.
, 1993, “
Combined-Mode Conjugate Heat Transfer in a Radiatively/Conductively-Stabilized Pulverized Coal Combustor
,” ASME Paper 93-WA/HT-37,
ASME Winter Annual Meeting
,
New Orleans
, LA.
34.
Kim
,
C.
, and
Lior
,
N.
, 1998, “
A Numerical Analysis of NOx Formation and Control in Radiatively/Conductively-Stabilized Pulverized Coal Combustors
,”
Chem. Eng. J.
0300-9467,
71
, pp.
221
231
.
35.
Ozisik
,
M. N.
, 1973,
Radiative Transfer and Interactions with Conduction and Convection
,
Wiley
, New York.
36.
Sparrow
,
E. M.
, and
Cess
,
R. D.
, 1978,
Radiation Heat Transfer
,
Hemisphere
, Washington, D.C.
37.
Jones
,
W. P.
, and
Whitelaw
,
J. H.
, 1982, “
Calculation Methods for Reacting Turbulent Flows: A Review
,”
Combust. Flame
0010-2180,
48
, pp.
1
26
.
38.
Smoot
,
L. D.
, and
Pratt
,
D. T.
, 1979,
Pulverized Coal Combustion and Gasification
,
Plenum Press
, New York.
39.
Mugele
,
R. A.
, and
Evans
,
H. D.
, 1951, “
Droplet Size Distribution in Sprays
,”
Ind. Eng. Chem.
0019-7866,
43
,
1317
1324
.
40.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops and Particles
,
Academic Press
, New York.
41.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
, 1952, “
Evaporation From Drops: Part II
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
173
180
.
42.
Kobayashi
,
H.
,
Howard
,
J. B.
, and
Sarofim
,
A. F.
, 1976, “
Coal Devolatilization at High Temperatures
,”
Sixteenth Symposium (International) on Combustion
,
The Combustion Institute
, pp.
411
425
.
43.
Baum
,
M. M.
, and
Street
,
P. J.
, 1971, “
Predicting the Combustion Behavior of Coal Particles
,”
Combust. Sci. Technol.
0010-2202,
3
(
5
), pp.
231
243
.
44.
Field
,
M. A.
, 1969, “
Rate of Combustion of Size-Graded Fractions of Char From a Low Rank Coal Between 1200K-2000K
,”
Combust. Flame
0010-2180,
13
, pp.
237
252
.
45.
Moran
,
M. J.
, and
Shapiro
,
H. N.
, 1988,
Fundamentals of Engineering Thermodynamics
,
John Wiley
, New York.
46.
Vu
,
B. T.
, and
Gouldin
,
F. C.
, 1982, “
Flow Measurements in a Model Swirl Combustor
,”
AIAA J.
0001-1452,
20
, pp.
642
651
.
You do not currently have access to this content.