The paper presents accurate numerical solutions of the full two-dimensional governing equations for steady and unsteady laminar/laminar internal condensing flows. The results relate to issues of better design and integration of condenser-sections in thermal management systems (looped heat pipes, etc.). The flow geometry, in normal or zero gravity, is chosen to be the inside of a channel with film condensation on one of the walls. In normal gravity, film condensation is on the bottom wall of a tilted (from vertical to horizontal) channel. It is found that it is important to know whether the exit conditions are constrained or unconstrained because nearly incompressible vapor flows occur only for exit conditions that are unconstrained. For the incompressible vapor flow situations, a method for computationally obtaining the requisite exit condition and associated stable steady/quasi-steady solutions is given here and the resulting solutions are shown to be in good agreement with some relevant experimental data for horizontal channels. These solutions are shown to be sensitive to the frequency and amplitude of the various Fourier components that represent the ever-present and minuscule transverse vibrations (standing waves) of the condensing surface. Compared to a vertical channel in normal gravity, shear driven zero gravity cases have much larger pressure drops, much slower wave speeds, much larger noise sensitive wave amplitudes that are controlled by surface tension, and narrower flow regime boundaries within which vapor flow can be considered incompressible. It is shown that significant enhancement in wave-energy and/or heat-transfer rates, if desired, are possible by designing the condensing surface noise to be in resonance with the intrinsic waves.
Skip Nav Destination
e-mail: narain@mtu.edu
Article navigation
Technical Papers
Effects of Gravity, Shear and Surface Tension in Internal Condensing Flows: Results From Direct Computational Simulations
Q. Liang,
Q. Liang
Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931
Search for other works by this author on:
X. Wang,
X. Wang
Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931
Search for other works by this author on:
A. Narain, Mem. ASME
e-mail: narain@mtu.edu
A. Narain, Mem. ASME
Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931
Search for other works by this author on:
Q. Liang
Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931
X. Wang
Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931
A. Narain, Mem. ASME
Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931
e-mail: narain@mtu.edu
Contributed by the Heat Transfer Division for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division October 4, 2003; revision received April 22, 2004. Associate Editor: J. Chung.
J. Heat Transfer. Oct 2004, 126(5): 676-686 (11 pages)
Published Online: November 16, 2004
Article history
Received:
October 4, 2003
Revised:
April 22, 2004
Online:
November 16, 2004
Citation
Liang , Q., Wang , X., and Narain, A. (November 16, 2004). "Effects of Gravity, Shear and Surface Tension in Internal Condensing Flows: Results From Direct Computational Simulations ." ASME. J. Heat Transfer. October 2004; 126(5): 676–686. https://doi.org/10.1115/1.1777586
Download citation file:
Get Email Alerts
Cited By
Related Articles
Film Condensation of Saturated Vapor Over Horizontal Noncircular Tubes With Progressively Increasing Radius of Curvature Drawn in the Direction of Gravity
J. Heat Transfer (December,2004)
Nonlinear Stability of
the Classical Nusselt Problem of Film Condensation and Wave
Effects
J. Appl. Mech (March,2007)
A Theory of Film Condensation in Horizontal Noncircular Section Microchannels
J. Heat Transfer (October,2005)
A Theoretical Study of Film Condensation in Horizontal Microfin Tubes
J. Heat Transfer (February,2002)
Related Proceedings Papers
Related Chapters
The Design and Implement of Remote Inclinometer for Power Towers Based on MXA2500G/GSM
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Applications
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Pin Floating on Surface of a Liquid
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables