We have batch-fabricated a microdevice consisting of two adjacent symmetric silicon nitride membranes suspended by long silicon nitride beams for measuring thermophysical properties of one-dimensional nanostructures (nanotubes, nanowires, and nanobelts) bridging the two membranes. A platinum resistance heater/thermometer is fabricated on each membrane. One membrane can be Joule heated to cause heat conduction through the sample to the other membrane. Thermal conductance, electrical conductance, and Seebeck coefficient can be measured using this microdevice in the temperature range of 4–400 K of an evacuated Helium cryostat. Measurement sensitivity, errors, and uncertainty are discussed. Measurement results of a 148 nm and a 10 nm-diameter single wall carbon nanotube bundle are presented.

1.
Volz
,
S. G.
, and
Chen
,
G.
,
1999
, “
Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires
,”
Appl. Phys. Lett.
,
75
, pp.
2056
2058
.
2.
Khitun
,
A.
,
Balandin
,
A.
, and
Wang
,
K. L.
,
1999
, “
Modification of the Thermal Conductivity in Silicon Quantum Wires Due to Spatial Confinement of Acoustic Phonons
,”
Superlattices Microstruct.
,
26
, pp.
181
193
.
3.
Dresselhaus
,
M. S.
, and
Eklund
,
P. C.
,
2000
, “
Phonons in Carbon Nanotubes
,”
Adv. Phys.
,
49
(
6
), pp.
705
814
.
4.
Schwab
,
K.
,
Henriksen
,
E. A.
,
Worlock
,
J. M.
, and
Roukes
,
M. L.
,
2000
, “
Measurement of the Quantum of Thermal Conductance
,”
Nature (London)
,
404
, pp.
974
976
.
5.
Hone
,
J.
,
Ellwood
,
I.
,
Muno
,
M.
,
Mizel
,
A.
,
Cohen
,
M. L.
,
Zettl
,
A.
,
Rinzler
,
A. G.
, and
Smalley
,
R. E.
,
1998
, “
Thermoelectric Power of Single-Walled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
80
, pp.
1042
1045
.
6.
Yi
,
W.
,
Lu
,
L.
,
Zhang
,
D. L.
,
Pan
,
Z. W.
, and
Xie
,
S. S.
,
1999
, “
Linear Specific Heat of Carbon Nanotubes
,”
Phys. Rev. B
,
59
, pp.
9015
9018
.
7.
Mizel
,
A.
,
Benedict
,
L. X.
,
Cohen
,
M. L.
,
Louie
,
S. G.
,
Zettl
,
A.
,
Budraa
,
N. K.
, and
Beyermann
,
W. P.
,
1999
, “
Analysis of the Low-Temperature Specific Heat of Multiwalled Carbon Nanotubes and Carbon Nanotube Ropes
,”
Phys. Rev. B
,
60
, pp.
3264
3270
.
8.
Hone
,
J.
,
Whitney
,
M.
,
Piskoti
,
C.
Whitney
,
M.
, and
Zettl
,
A.
,
1999
, “
Thermal Conductivity of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
59
, pp.
2514
2516
.
9.
Hone
,
J.
,
Llaguno
,
M. C.
,
Nemes
,
N. M.
,
Johnson
,
A. T.
,
Fischer
,
J. E.
,
Walters
,
D. A.
,
Casavant
,
M. J.
,
Schmidt
,
J.
, and
Smalley
,
R. E.
,
2000
, “
Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films
,”
Appl. Phys. Lett.
,
77
, pp.
666
668
.
10.
Berber
,
S.
,
Kwon
,
Y.-K.
, and
Tomanek
,
D.
,
2000
, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
, pp.
4613
4616
.
11.
Che
,
J.
,
Cagin
,
T.
, and
Goddard
,
W. A.
,
2000
, “
Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
,
11
, pp.
65
69
.
12.
Osman
,
M.
, and
Srivastava
,
D.
,
2001
, “
Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes
,”
Nanotechnology
,
12
, pp.
21
24
.
13.
Lin
,
Y.-M.
,
Sun
,
X.
, and
Dresselhaus
,
M. S.
,
2000
, “
Theoretical Investigation of Thermoelectric Transport Properties of Cylindrical Bi Nanowires
,”
Phys. Rev. B
,
62
, pp.
4610
4623
.
14.
Heremans
,
J. P.
,
Thrush
,
C. M.
,
Morelli
,
D. T.
, and
Wu
,
M.-C.
,
2002
, “
Thermoelectric Power of Bismuth Nanocomposites
,”
Phys. Rev. Lett.
,
88
, p.
216801
216801
.
15.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement From 30–750 K: The 3ω Method
,”
Rev. Sci. Instrum.
,
61
, pp.
802
808
.
16.
Shi, L., 2001, “Mesoscopic Thermophysical Measurements of Microstructures and Carbon Nanotubes,” Ph.D. dissertation, University of California, Berkeley.
17.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
,
2001
, “
Thermal Transport Measurements of Individual Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
87
, p.
215502
215502
.
18.
De Vecchio
,
D.
,
Taborek
,
P.
, and
Rutledge
,
J. E.
,
1995
, “
Matching the Resistivity of Si:Nb Thin Film Thermometers to the Experimental Temperature Range
,”
Rev. Sci. Instrum.
,
66
, pp.
5367
5368
.
19.
Li, D., Wu, Y., Kim, P., Shi, L., Mingo, N., Liu, Y., Yang, P., and Majumdar, A., 2003, “Thermal Conductivity of Individual Silicon Nanowires,”submitted.
20.
Li, D., Prieto, A. L., Wu, Y., Martin-Gonzalez, M. S., Stacy, A., Sands, T., Gronsky, R., Yang, P., and Majumdar, A., 2002, “Measurement of Bi2Te3 Nanowire Thermal Conductivity and Seebeck Coefficient,” Proc. 21st International Conference on Thermoelectrics, IEEE, pp. 333–336.
21.
Shi, L., Hao, Q., Yu, C., Kim, D., Farooqi, R., Mingo, N., Kong, X., and Wang, Z. L., 2003, “Thermal Conductivity of SnO2 Nanobelts,” in preparation.
22.
Bockrath
,
M.
,
Cobden
,
D. H.
,
Lu
,
J.
,
Rinzler
,
A. G.
,
Smalley
,
R. E.
,
Balents
,
L.
, and
McEuen
,
P. L.
,
1999
, “
Luttinger-Liquid Behavior in Carbon Nanotubes
,”
Nature (London)
,
397
, pp.
598
601
.
23.
Yao
,
Z.
,
Postma
,
H. W. Ch.
,
Balents
,
L.
, and
Dekker
,
C.
,
1999
, “
Carbon Nanotube Intramolecular Junctions
,”
Nature (London)
,
402
, pp.
273
280
.
24.
Collins
,
P. G.
,
Bradley
,
K.
,
Ishigami
,
M.
, and
Zettl
,
A.
,
2000
, “
Extreme Oxygen Sensitivity of Electrical Properties of Carbon Nanotubes
,”
Science
,
287
, pp.
1801
1804
.
25.
Bradley
,
K.
,
Jhi
,
S.-H.
,
Collins
,
P. G.
,
Hone
,
J.
,
Cohen
,
M. L.
,
Louie
,
S. G.
, and
Zettl
,
A.
,
2000
Is the Intrinsic Thermoelectric Power of Carbon Nanotubes Positive?
Phys. Rev. Lett.
,
85
, pp.
4361
4364
.
26.
Rowe, D. M., 1995, CRC Handbook of Thermoelectrics, CRC Press, New York.
You do not currently have access to this content.