Laminar flow and heat transfer on a moving surface due to a bank of impinging slot jets have been numerically investigated. Two types of jet, namely axial and knife-jet with an exit angle of 60 deg were considered. The surface velocity up to two times the jet velocity at the nozzle exit was imposed on the impinging surface. It has been observed that while with increasing velocity of the impinging surface, the total heat transfer reduces; the distribution pattern becomes more uniform. For the same amount of mass and momentum flux at the nozzle exit, heat transfer from the axial jet is considerably higher than that from the vectored jets at all surface velocities considered. It was found that the local heat transfer over the surface for the case of the axial jet and the knife-jet scales with Re0.5 and Re0.55, respectively.

1.
Downs, S. J., and James, E. H., 1987, “Jet Impingement Heat Transfer—A Literature Survey,” ASME Paper 87-H-35.
2.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
, pp.
111
134
.
3.
Martin, H., 1977, “Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces,” Advances in Heat Transfer, 13, Academic Press, pp. 1–60.
4.
Martin, H., 1990, “Impinging Jets,” in Handbook of Heat Exchanger Design, G. F. Hewitt, ed., Hemisphere, pp. 2.5.6.1–2.5.6.10.
5.
Subba
,
Raju, K.
, and
Schlunder
,
E. U.
,
1977
, “
Heat Transfer Between an Impinging Jet and a Continuously Moving Surface
,”
Waerme-Stoffuebertrag.
,
10
, pp.
131
136
.
6.
Zumbrunnen
,
D. A.
,
1991
, “
Convective Heat and Mass Transfer in the Stagnation Region of a Laminar Planar Jet Impinging on a Moving Surface
,”
ASME J. Heat Transfer
,
113
, pp.
563
570
.
7.
Polat
,
S.
, and
Douglas
,
W. J. M.
,
1990
, “
Heat Transfer Under Multiple Slot Jets Impinging on a Permeable Moving Surface
,”
AIChE J.
,
36
, pp.
1370
1378
.
8.
Huang, P. G., Mujumdar, A. S., and Douglas, W. J. M., 1984, “Numerical Prediction of Fluid Flow and Heat Transfer Under a Turbulent Impinging Slot Jet with Surface Motion and Crossflow,” ASME Paper 84-WA/HT-33.
9.
Chen
,
J.
,
Wang
,
T.
, and
Zumbrunnen
,
D. A.
,
1994
, “
Numerical Analysis of Convective Heat Transfer From a Moving Plate Cooled by an Array of Submerged Planar Jets
,”
Numer. Heat Transfer, Part A
,
26
, pp.
141
160
.
10.
Chattopadhyay, H., Biswas, G., and Mitra, N. K., 1999, “Heat Transfer From a Moving Surface Due to Impinging Jets,” Proc. ASME Heat Transfer Division, Vol. HTD 364-1, pp. 261–270.
11.
Page, R. H., 1991, “Heat and Mass Transfer as a Consequence on Radial Jet Reattachment,” Transport Phenomena and Mass Transfer, 1, Elsevier Co., Amsterdam, pp. 432–443.
12.
Laschefski
,
H.
,
Cziesla
,
T.
, and
Mitra
,
N. K.
,
1995
, “
Influence of Exit Angle on Radial Jet Reattachment and Heat Transfer
,”
AIAA J.
,
9
(
1
), pp.
169
174
.
13.
Laschefski
,
H.
,
Cziesla
,
T.
,
Biswas
,
G.
, and
Mitra
,
N. K.
,
1996
, “
Numerical Investigation of Heat Transfer by Rows of Rectangular Impinging Jets
,”
Numer. Heat Transfer, Part A
,
30
, pp.
87
101
.
14.
Cziesla, T., Chattopadhyay, H., and Mitra, N. K., 1998, “Large Eddy Simulation of Flow and Heat Transfer of an Impinging Radial Jet,” Proc. 16 Intl. Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, 515, Springer, pp. 141–146.
15.
Chattopadhyay
,
H.
, and
Saha
,
S. K.
,
2001
, “
Numerical Investigations of Heat Transfer Over a Moving Surface Due to Impinging Knife-Jets
,”
Numer. Heat Transfer, Part A
,
39
, pp.
531
549
.
16.
Chen
,
M.
,
Chalupa
,
R.
,
West
,
A. C.
, and
Modi
,
V.
,
2001
, “
High Schmidt Mass Transfer in a Laminar Impinging Slot Jet Flow
,”
Int. J. Heat Mass Transf.
,
43
, pp.
3907
3915
.
17.
Sezai
,
I.
, and
Mohamad
,
A. A.
,
1999
, “
Three-Dimensional Simulation of Laminar Rectangular Impinging Jets Flow Structure, and Heat Transfer
,”
ASME J. Heat Transfer
,
121
, pp.
50
56
.
18.
Laschefski
,
H.
,
Cziesla
,
T.
, and
Mitra
,
N. K.
,
1997
, “
Evolution of Flow Structure in Impinging Three-dimensional Axial and Radial Jets
,”
Int. J. Numer. Methods Fluids
,
25
, pp.
1083
1103
.
19.
Ferziger, J. H., and Peric, M., 1997, Computational Methods for Fluid Dynamics, Springer, New York.
20.
Childs, R. E., and Nixon, D., 1986, “Unsteady Three-Dimensional Simulations of a VTOL Upwash Fountain,” AIAA-Paper-86-0212.
21.
Grinstein
,
F. F.
,
Oran
,
E. S.
, and
Boris
,
J. P.
,
1987
, “
Direct Numerical Simulation of Axisymmetric Jets
,”
AIAA J.
,
25
, pp.
92
98
.
22.
Kim
,
J.
, and
Moin
,
P.
,
1985
, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
59
, pp.
308
323
.
23.
Chou
,
Y. J.
, and
Hung
,
Y. H.
,
1994
, “
Impingement Cooling of an Isothermally Heated Surface with a Confined Slot Jet
,”
ASME J. Heat Transfer
,
116
, pp.
479
482
.
24.
van Heiningen
,
A. R. P.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
,
1976
, “
Numerical Prediction of the Flow Field and Impingement Heat Transfer Caused by a Slot Jet
,”
ASME J. Heat Transfer
,
98
, pp.
654
658
.
You do not currently have access to this content.