An optical method for measuring the bubble dynamic data subject to an isolated bubble model is presented at low heat flux q1kW/m2; while the operating heat fluxes are up to 30 kW/m2. By simultaneous measurements of departure diameters, velocities, frequencies and nucleation site densities, the heat transfer contribution of an individual active site is evaluated. A single phase heat transfer correlation was used to model the present heat transfer data. The test specimens consisted of tubes with porous copper (Cu) and molybdenum (Mo) plasma coated surfaces. The porosity (ε), the thickness of the porous layer (δ), and the mean pore diameter (η) of the tested tubes are the following: 0.055ε0.057,100δ300μm, and 3η4μm. The tests were carried out using R-134a and R-600a as working fluid at a saturation temperature of 18°C and with low and moderate heat fluxes (⩽1 kW/m2) for boiling visualization and related measurements (⩽30 kW/m2).

1.
Thome, J. R., 1990, Enhanced Boiling Heat Transfer, Hemisphere Publishing Corporation, New York, pp. 28–63.
2.
Hsieh
,
S.-S.
, and
Hsu
,
P.-T.
,
1994
, “
Nucleate Boiling Characteristics of R-114, Distilled Water H2O and R-134a on Plain and Rib Roughened Tube Geometries
,”
Int. J. Heat Mass Transf.
,
37
, pp.
1423
1432
.
3.
Hsieh
,
S.-S.
, and
Weng
,
C. J.
,
1997
, “
Nucleate Pool Boiling from Coated Surfaces in Saturated R-134a and R-407c
,”
Int. J. Heat Mass Transf.
,
40
, pp.
519
532
.
4.
Hsieh
,
S.-S.
, and
Weng
,
C. J.
,
1997
, “
Nucleate Pool Boiling Heat Transfer Coefficients of Distilled Water H2O and R-134a/Oil Mixtures from Rib-Roughened Surfaces
,”
ASME J. Heat Transfer
,
119
, pp.
142
151
.
5.
Gorenflo, D., 1966, “Zum Warmeubergang bei der Blasen verdampfung on Rippenrohren,” Ph.D. dissertation. TH Karlsruhe, Germany.
6.
Webb
,
R. L.
, and
Pais
,
C.
,
1992
, “
Nucleate Pool Boiling Data for Five Refrigerants on Plain, Integral-Fin and Enhanced Tube Geometries
,”
Int. J. Heat Mass Transf.
,
35
, pp.
1893
1904
.
7.
Barthau
,
G.
,
1992
, “
Active Nucleate Site Density and Pool Boiling Heat Transfer-An Experimental Study
,”
Int. J. Heat Mass Transf.
,
35
, pp.
271
278
.
8.
Ammerman
,
C.-N.
,
You
,
S.-M.
, and
Hong
,
Y.-S.
,
1996
, “
Identification of Pool Boiling Heat Transfer Mechanisms from a Wire Immersed in Saturated FC-72 Using a Single-Photo/LDA Method
,”
ASME J. Heat Transfer
,
118
, pp.
117
123
.
9.
Mertz
,
R.
,
Groll
,
M.
,
Marvillet
,
Ch.
, and
Hesselgreaves
,
J. E.
,
1994
, “
Enhanced Static Heat Transfer Surfaces for Compact Two-Phase Heat Exchangers
,”
Heat Recovery Syst. CHP
,
14
, pp.
493
506
.
10.
Hsieh
,
S.-S.
, and
Yang
,
T.-Y.
,
2001
, “
Nucleate Pool Boiling from Coated and Spirally Wrapped Tubes in Saturated R-134a and R-600a at Low and Moderate Heat Flux
,”
ASME J. Heat Transfer
,
123
, pp.
257
270
.
11.
Hsieh
,
S.-S.
,
Chen
,
P.-J.
, and
Chin
,
H.-J.
,
1999
, “
Turbulent Flow in a Rotating Two Pass Smooth Channel
,”
ASME J. Fluids Eng.
,
121
, pp.
725
734
.
12.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
13.
Clift, R., Grace, J. R., and Weber, M. E., 1978, Bubbles, Drops, and Particles, Academic Press, Inc., New York. pp. 171.
14.
Middleman, S., 1998, An Introduction to Fluid Dynamics, John Wiley and Sons, Inc., New York, pp. 199.
15.
Carey, V. P., 1992, Liquid-Vapor Phase Change Phenomena, Hemisphere Publishing Corp., Washington, pp. 223.
16.
Benjamin
,
R. H.
, and
Balakrishnan
,
A. R.
,
1997
, “
Nucleate Site Density in Pool Boiling of Saturated Pure Liquids: Effect of Surface Microroughness and Surface and Liquid Physical Properties
,”
Exp. Therm. Fluid Sci.
,
15
, pp.
32
42
.
17.
Rudemiller, G. R., and Lindsay, J. D., 1990, “An Investigation of Boiling Heat Transfer in Fibrous Porous Media,” Heat Transfer 1990, Proceedings of the Ninth International Heat Transfer Conference, 5, pp. 159–164.
18.
Nakayama
,
W.
,
Daikoku
,
T.
,
Kuwahara
,
H.
, and
Nakajima
,
T.
,
1980
, “
Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces-Part I: Experimental Investigation
,”
ASME J. Heat Transfer
,
102
, pp.
445
450
.
You do not currently have access to this content.