Abstract

The present study is an experimental investigation of the nucleate pool boiling heat transfer enhancement mechanism of microporous surfaces immersed in saturated FC-72. Measurements of bubble size, frequency, and vapor flow rate from a plain and microporous coated 390 μm diameter platinum wire using the consecutive-photo method were taken to determine the effects of the coating on the convective and latent heat transfer mechanisms. Results of the study showed that the microporous coating augments nucleate boiling performance through increased latent heat transfer in the low heat flux region and through increased convection heat transfer in the high heat flux region. The critical heat flux for the microporous coated surface is significantly enhanced over the plain surface due to decreased latent heat transfer (decreased vapor generation rate) and/or increased hydrodynamic stability from increased vapor inertia; both of which are a direct result of increased nucleation site density.

1.
Kurihara
,
H. M.
, and
Myers
,
J. E.
,
1960
, “
The Effects of Superheat and Surface Roughness on Boiling Coefficients
,”
AIChE J.
,
6
(
1
), pp.
83
91
.
2.
Berenson
,
P. J.
,
1962
, “
Experiments on Pool-Boiling Heat Transfer
,”
Int. J. Heat Mass Transf.
,
5
, pp.
985
999
.
3.
Nishio
,
S.
, and
Chandratilleke
,
G. R.
,
1989
, “
Steady-State Pool Boiling Heat Transfer to Saturated Liquid Helium at Atmospheric Pressure
,”
JSME Int. J., Ser. II
,
32
(
4
), pp.
639
645
.
4.
Ramilison
,
J. M.
,
Sadasivan
,
P.
, and
Lienhard
,
J. H.
,
1992
, “
Surface Factors Influencing Burnout on Flat Heaters
,”
ASME J. Heat Transfer
,
114
(
1
), pp.
287
290
.
5.
Griffith, P., and Wallis, J. D., 1960, “The Role of Surface Conditions in Nucleate Boiling,” Chemical Engineering Progress Symposium Series No. 49, 56, pp. 49–63.
6.
Thome, J. R., 1992, “Mechanisms of Enhanced Nucleate Pool Boiling,” Proceedings of the Engineering Foundation Conference on Pool and External Flow Boiling, ASME, New York, pp. 337–343.
7.
Polezhaev
,
Y. V.
, and
Kovalev
,
S. A.
,
1990
, “
Modeling Heat Transfer with Boiling on Porous Structures
,”
Thermal Engineering
,
37
(
12
), pp.
617
620
.
8.
Tehver
,
J.
,
1992
, “
Influences of Porous Coating on the Boiling Burnout Heat Flux
,”
Recent Advances in Heat Transfer
,B. Sunde´n et al., eds., Elsevier Science Publishers,
pp.
231
242
.
9.
O’Connor
,
J. P.
,, and
You
,
S. M.
,
1995
, “
A Painting Technique to Enhance Pool Boiling Heat Transfer in FC-72
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
387
393
.
10.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Boiling Heat Transfer Phenomena From Microporous and Porous Surfaces in Saturated FC-72
,”
Int. J. Heat Mass Transf.
,
40
(
18
), pp.
4437
4447
.
11.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Enhanced Boiling Heat Transfer From Microporous Surfaces: Effects of a Coating Composition and Method
,”
Int. J. Heat Mass Transf.
,
40
(
18
), pp.
4449
4460
.
12.
You, S. M. and O’Connor, J. P. 1998, “Boiling Enhancement Paint,” U. S. Patent #5814392.
13.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Enhanced Boiling Heat Transfer From Micro-Porous Cylindrical Surfaces in Saturated FC-87 and R-123
,”
ASME J. Heat Transfer
,
119
(
2
), pp.
319
325
.
14.
Rainey
,
K. N.
, and
You
,
S. M.
,
2001
, “
Effects of Heater Orientation on Pool Boiling Heat Transfer from Microporous Coated Surfaces
,”
Int. J. Heat Mass Transf.
,
44
(
14
), pp.
2589
2599
.
15.
Ammerman
,
C. N.
, and
You
,
S. M.
,
1998
, “
Consecutive-Photo Method to Measure Volume Flow Rate During Boiling From a Wire Immersed in Saturated Liquid
,”
ASME J. Heat Transfer
,
120
(
3
), pp.
561
567
.
16.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1976
, “
Correlating Equations for Natural Convection Heat Transfer Between Horizontal Circular Cylinders
,”
Int. J. Heat Mass Transf.
,
19
, pp.
1127
1134
.
17.
Hong
,
Y. S.
,
Ammerman
,
C. N.
, and
You
,
S. M.
,
1997
, “
Boiling Characteristics of Cylindrical Heaters in Saturated, Gas-Saturated, and Pure-Subcooled FC-72
,”
ASME J. Heat Transfer
,
119
(
2
), pp.
313
318
.
18.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
(
1
), pp.
3
8
.
19.
Hong, Y. S., “Pool Boiling Heat Transfer for Cylindrical Heaters Immersed in Gas-Saturated FC-72,” Ph.D. thesis, The University of Texas at Arlington, Arlington, TX.
20.
Bar-Cohen, A., and McNeil, A., 1992, “Parametric Effects on Pool Boiling Critical Heat Flux in Dielectric Liquids,” Proceedings of the Engineering Foundation Conference on Pool and External Flow Boiling, ASME, Santa Barbara, CA, pp. 171–175.
21.
Rainey
,
K. N.
, and
You
,
S. M.
,
2000
, “
Pool Boiling Heat Transfer From Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
509
516
.
22.
Chang
,
J. Y.
, and
You
,
S. M.
,
1996
, “
Heater Orientation Effects on Pool Boiling of Microporous-Enhanced Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
,
118
(
4
), pp.
937
943
.
23.
Paul
,
D. D.
, and
Abdul-Khalik
,
S. I.
,
1983
, “
A Statistical Analysis of Saturated Nucleate Boiling Along a Heated Wire
,”
Int. J. Heat Mass Transf.
,
26
, pp.
509
519
.
24.
Gaertner
,
R. F.
,
1965
, “
Photographic Study of Nucleate Pool Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
87
, pp.
17
29
.
25.
Rini
,
D. P.
,
Chen
,
R. H.
, and
Chow
,
L. C.
,
2001
, “
Bubble Behavior and Heat Transfer Mechanism in FC-72 Pool Boiling
,”
Exp. Heat Transfer
,
14
(
1
), pp.
27
44
.
26.
Gaertner, R. F., and Westwater, J. R., 1960, “Population of Active Sites in Nucleate Boiling Heat Transfer,” Chemical Engineering Progress Symposium Series, 56(30), pp. 39–48.
27.
Kolev
,
N. I.
,
1994
, “
The Influence of Mutual Bubble Interaction on the Bubble Departure Diameter
,”
Exp. Therm. Fluid Sci.
,
8
, pp
167
174
.
28.
Ammerman
,
C. N.
, and
You
,
S. M.
,
1996
, “
Determination of the Boiling Enhancement Caused by Surfactant Addition to Water
,”
ASME J. Heat Transfer
,
118
, pp.
561
567
.
You do not currently have access to this content.