Due to the small component sizes in modern microdevices, surface forces can create undesirable adhesion between microstructures, which is referred to as stiction. The current study uses a 100 ns, 1064 nm, Nd:YAG laser to repair polycrystalline silicon microcantilevers stuck to the underlying substrate. The results show that a Nd:YAG, 1064 nm laser is capable of repairing failed microstructures with yields exceeding those reported in earlier studies. Yields of 100 percent for cantilevers up to 1 mm in length were demonstrated for several laser operating conditions. The yields increase strongly with increased laser fluence and increase slightly with longer exposure times.

1.
Maboudian
,
R.
, and
Howe
,
R. T.
,
1997
, “
Critical Review: Adhesion in Surface Micromechanical Structures
,”
J. Vac. Sci. Technol. B
,
15
, pp.
1
20
.
2.
Fushinobu
,
K.
,
Phinney
,
L. M.
, and
Tien
,
N. C.
,
1996
, “
Ultrashort-Pulse Laser Heating of Silicon to Reduce Microstructure Adhesion
,”
Int. J. Heat Mass Transf.
,
39
, pp.
3181
3186
.
3.
Tien
,
N. C.
,
Jeong
,
S.
,
Phinney
,
L. M.
,
Fushinobu
,
K.
, and
Bokor
,
J.
,
1996
, “
Surface Adhesion Reduction in Silicon Microstructures Using Femtosecond Laser Pulses
,”
Appl. Phys. Lett.
,
68
, pp.
197
199
.
4.
Phinney, L. M., and Tien, C. L., 1998, “Recovery Mechanisms for Stiction-Failed Microcantilevers Using Short-Pulse Lasers,” Heat Transfer 1998: Proceedings of the 11th International Heat Transfer Conference, Vol. 5, pp. 145–150.
5.
Fushinobu
,
K.
,
Phinney
,
L. M.
,
Kurosaki
,
Y.
, and
Tien
,
C. L.
,
1999
, “
Optimization of Laser Parameters for Ultrashort-Pulse Laser Recovery of Stiction-Failed Microstructures
,”
Numer. Heat Transfer, Part A
,
A36
, pp.
345
357
.
6.
Phinney
,
L. M.
,
Fushinobu
,
K.
, and
Tien
,
C. L.
,
2000
, “
Subpicosecond Laser Processing of Polycrystalline Silicon Microstructures
,”
Microscale Thermophys. Eng.
,
4
, pp.
61
75
.
7.
Koester, D. A., Mahadevan, R., Hardy, B., and Markus, K. W., 2001, “MUMPs Design Handbook,” Cronos Integrated Microsystems, Research Triangle Park, NC, pp. 1–41.
8.
de Boer, M. P., Clews, P. J., Smith, B. K., and Michalske, T. A., 1998, “Adhesion of Polysilicon Microbeams in Controlled Humidity Ambients,” Proceeding of the 1998 Spring Materials Research Society Symposium, 518, pp. 131–6.
9.
Rogers
,
J. W.
, and
Phinney
,
L. M.
,
2001
, “
Process Yields for Laser Repair of Aged, Stiction-Failed, MEMS Devices
,”
J. Microelectromech. Syst.
,
10
, pp.
280
285
.
10.
Rogers, J. W., Mackin, T. J., and Phinney, L. M., 2001, “A Thermomechanical Model for Adhesion Reduction of MEMS Microcantilevers,” Proceedings of the 2001 ASME International Mechanical Engineering Congress and Exposition, 2, MEMS-23823, ASME, New York.
11.
Jones
, Jr.,
R. E.
, and
Wesolowski
,
S. P.
,
1984
, “
Electrical, Thermoelectric, and Optical Properties of Strongly Degenerate Polycrystalline Silicon Films
,”
J. Appl. Phys.
,
56
, pp.
1701
1706
.
12.
Globus, T., Fonash, S. J., and Gildenblat, G., 1996, “Optical Characterization of Hydrogenated Silicon Films in the Extended Energy Range,” in Diagnostic Techniques for Semiconductor Materials Processing II, Pang et al., eds., pp. 313–318.
You do not currently have access to this content.