A new flow map is proposed to emphasize the importance of surface tension in two-phase flow in horizontal miniature and micro tubes. A transition boundary based on a force balance including shear, buoyancy and surface tension forces is also proposed. The flow map is compared against a number of existing experimental data sets totaling 1589 data points. Comparison of the proposed map and model with previous models shows substantial improvement and accuracy in determining surface tension dominated regimes. Furthermore, the proposed flow map shows how each regime transition boundary is affected by surface tension.

1.
Faghri, A., 1995, Heat Pipe Science and Technology, Taylor & Francis, Washington.
2.
Ostrach
,
S.
, and
Koestel
,
A.
,
1965
, “
Film Instabilities in Two-Phase Flows
,”
AIChE J.
,
11
, No.
2
, pp.
294
303
.
3.
Rabas
,
T. J.
, and
Minard
,
P. G.
,
1987
, “
Two Types of Flow Instabilities Occurring Inside Horizontal Tubes With Complete Condensation
,”
Heat Transfer Eng.
,
8
, No.
1
, pp.
40
49
.
4.
Teng
,
H.
,
Cheng
,
P.
, and
Zhao
,
T. S.
,
1999
, “
Instability of Condensate Film And Capillary Blocking In Small-Diameter-Thermosyphon Condensers
,”
Int. J. Heat Mass Transf.
,
42
, pp.
3071
3083
.
5.
Dobson
,
M. K.
, and
Chato
,
J. C.
,
1998
, “
Condensation in Smooth Horizontal Tubes
,”
ASME J. Heat Transfer
,
120
, pp.
193
213
.
6.
Soliman, H. M., 1974, “Analytical and Experimental Studies of Flow Patterns During Condensation Inside Horizontal Tubes,” Ph.D. dissertation, Kansas State Univ.
7.
Baker
,
O.
,
1954
, Simultaneous Flow of Oil and Gas,
Oil & Gas J.
,
53
, pp.
185
195
.
8.
Chato
,
J. C.
,
1962
, “
Laminar Condensation Inside Horizontal and Inclined Tubes
,”
ASHRAE J.
,
4
, pp.
52
60
.
9.
Suo, M., and Griffith, P., 1963, “Two Phase Flow in Capillary Tube,” Technical Report No. 8581-24, Mass. Institute of Technology.
10.
Griffith, P., and Lee, K. S., 1964, “The Stability of an Annulus of Liquid in a Tube,” Trans. ASME, pp. 666–668.
11.
Soliman
,
H. M.
, and
Azer
,
N. Z.
,
1971
, “
Flow Patterns During Condensation Inside a Horizontal Tube
,”
ASHRAE Trans.
,
77
, Part
1
, pp.
210
224
.
12.
Traviss
,
D. P.
, and
Rohsenow
,
W. M.
,
1973
, “
Flow Regimes in Horizontal Two-Phase Flow With Condensation
,”
ASHRAE Trans.
,
79
, pp.
31
39
.
13.
Mandhane
,
J. M.
,
Gregory
,
G. A.
, and
Aziz
,
K.
,
1974
, “
A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pipes
,”
Int. J. Multiphase Flow
,
1
, pp.
537
553
.
14.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
,
22
, No.
1
, pp.
47
55
.
15.
Jaster
,
H.
, and
Kosky
,
P. G.
,
1976
, “
Condensation Heat Transfer in a Mixed Flow Regime
,”
Int. J. Heat Mass Transf.
,
19
, pp.
95
99
.
16.
Weisman
,
J.
,
Duncan
,
D.
,
Gibson
,
J.
, and
Crawford
,
T.
,
1979
, “
Effects of Fluid Properties And Pipe Diameter On Two-Phase Flow Patterns In Horizontal Lines
,”
Int. J. Multiphase Flow
,
5
, pp.
437
462
.
17.
Palen
,
J. W.
,
Breber
,
G.
, and
Taborek
,
J.
,
1979
, “
Prediction of Flow Regimes in Horizontal Tube-Side Condensation
,”
Heat Transfer Eng.
,
1
, No.
2
, pp.
47
57
.
18.
Breber
,
G.
,
Palen
,
J. W.
, and
Taborek
,
J.
,
1980
, “
Prediction of Horizontal Tubeside Condensation of Pure Components Using Flow Regime Criteria
,”
ASME J. Heat Transfer
,
102
, pp.
471
476
.
19.
Tandon
,
T. N.
,
Varma
,
H. K.
, and
Gupta
,
C. P.
,
1982
, “
A New Flow Regimes Map for Condensation Inside Horizontal Tubes
,”
ASME J. Heat Transfer
,
104
, pp.
763
768
.
20.
Soliman
,
H. M.
,
1982
, “
On the Annular-to-Wavy Flow Pattern Transition During Condensation Inside Horizontal Tubes
,”
Can. J. Chem. Eng.
,
60
, pp.
475
481
.
21.
Barnea
,
D.
,
Luninski
,
Y.
, and
Taitel
,
Y.
,
1983
, “
Flow Pattern in Horizontal and Vertical Two Phase Flow in Small Diameter Pipes
,”
Can. J. Chem. Eng.
,
61
, pp.
617
620
.
22.
Soliman
,
H. M.
,
1983
, “
Correlation of Mist-to-Annular Transition During Condensation
,”
Can. J. Chem. Eng.
,
61
, pp.
178
182
.
23.
Soliman
,
H. M.
,
1986
, “
The Mist-Annular Transition During Condensation and Its Influence on the Heat Transfer Mechanism
,”
Int. J. Multiphase Flow
,
12
, No.
2
, pp.
277
288
.
24.
Rahman
,
M. M.
,
Fathi
,
A. M.
, and
Soliman
,
H. M.
,
1985
, “
Flow Pattern Boundaries During Condensation: New Experimental Data
,”
Can. J. Chem. Eng.
,
63
, pp.
547
552
.
25.
Fathi, A. M., 1980, Analysis of Two-Phase Flow Patterns of Condensing Steam Inside a Horizontal Tube, M.Sc. thesis, University of Manitoba, Winnipeg, Canada.
26.
Damianides, C. A., and Westwater, J. W., 1988, “Two-Phase Flow Patterns in a Compact Heat Exchanger and in Small Tubes,” Proceedings of the 2nd U.K. National Conference on Heat Transfer, 2, pp. 1257–1268.
27.
Galbiati
,
L.
, and
Andreini
,
P.
,
1992
, “
The Transition Between Stratified and Annular Regimes for Horizontal Two-Phase Flow in Small Diameter Tubes
,”
Int. Commun. Heat Mass Transfer
,
19
, pp.
185
190
.
28.
Palen, J. W., Kistler, R. S., and Yang, Z. F., 1993, “What We Still Don’t Know About Condensation in Tubes, Condensation and Condenser Design,” ASME Proceedings of the Engineering Foundation Conference on Condensation and Condenser Design, pp. 19–53.
29.
Dobson
,
M. K.
,
Chato
,
J. C.
,
Hinde
,
D. K.
, and
Wang
,
S. P.
,
1994
, “
Experimental Evaluation of Internal Condensation of Refrigerants R-12 and R-134a
,”
ASHRAE Trans.
,
100
, No.
1
, pp.
744
754
.
30.
Carey, V. P., 1992, Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Taylor & Francis, Bristol, PA.
31.
Zivi
,
S. M.
,
1964
, “
Estimation of Steady State Steam Void-Fraction by Means of the Principle of Minimum Entropy Production
,”
ASME J. Heat Transfer
,
86
, pp.
247
252
.
32.
Wallis, G. B., 1965, One Dimensional Two-Phase Flow, Wiley, New York.
33.
Baroczy, C. J., 1965, “Correlation of Liquid Fraction in Two-Phase Flow With Applications to Liquid Metals,” Chemical Engineering Progress Symposium Series, 61, No. 57, pp. 179–191.
34.
Thom
,
J. R. S.
,
1964
, “
Prediction of Pressure Drop During Forced Circulation Boiling of Water
,”
Int. J. Heat Mass Transf.
,
7
, pp.
709
724
.
35.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
, No.
1
, pp.
39
48
.
36.
Smith
,
S. L.
,
1969
–70, “
Void Fraction in Two-Phase Flow: A Correlation Based Upon an Equal Velocity Head Model
,”
Proceedings of the Institution of Mechanical Engineers, Thermodynamics and Fluid Mechanics Group
, Vol.
184
, Pt. 1, No.
36
, pp.
647
657
.
37.
Wedekind
,
G. L.
,
Bhatt
,
B. L.
, and
Beck
,
B. T.
,
1978
, “
A System Mean Void Fraction Model For Predicting Various Transient Phenomena Associated With Two-Phase Evaporating and Condensing Flows
,”
Int. J. Multiphase Flow
,
4
, pp.
97
114
.
38.
Levich, V. G., 1962, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N. J.
You do not currently have access to this content.