Laser zone texture is a new approach to improve tribology performance of high aerial density disks made with glass substrates. In this process, nanotexture is introduced to the surface by discrete laser pulses. The topography change is due to the elevation of fictive temperature in the short time and high temperature scales that occur through the laser energy coupling with glass. To exercise better control over this thermal process, knowing the temperature field induced by the laser pulse and the timescale of the thermal cycle are very important. In this paper, emission measurements are made from a laser-heated surface of approximately 300 μm2 and temporally resolved to 100 ns. Several emission bands are collected in the visible. From emission data, the extensive heat capacity of the heat affected zone is derived, allowing peak surface temperatures to be determined from the pulse energy. Experimental results are compared with a numerical model to determine the validity of earlier calculations and conclusions.

1.
Rauch
,
G. C.
,
Liu
,
J. J.
,
Lee
,
S. Y.
,
Boszormenyi
,
I.
,
Chuan
,
G.
,
Jing
,
G.
,
Kuo
,
D.
,
Marchon
,
B.
,
Vierk
,
S.
, and
Malmhall
,
R.
,
1996
, “
Glass-Ceramic Substrates for 1 Gb/in2 and Beyond
,”
IEEE Trans. Magn.
,
32
, pp.
3642
3647
.
2.
Teng
,
E.
,
Goh
,
W.
, and
Eltouhky
,
A.
,
1996
, “
Laser Zone Texture on Alternative Substrate Disks
,”
IEEE Trans. Magn.
,
32
, pp.
3759
3761
.
3.
Kuo
,
D.
,
Gui
,
J.
,
Marchon
,
B.
,
Lee
,
S.
,
Boszormenyi
,
I.
,
Liu
,
J. J.
,
Rauch
,
G. C.
,
Vierk
,
S.
, and
Meyer
,
D.
,
1996
, “
Design of Laser Zone Texture for Low Glide Media
,”
IEEE Trans. Magn.
,
32
, No.
5:1
, pp.
3753
3758
.
4.
Tam
,
A. C.
,
Brannon
,
J.
,
Baumgart
,
P.
, and
Pour
,
I. K.
,
1997
, “
Laser Texturing of Glass Disk Substrates
,”
IEEE Trans. Magn.
,
33
, No.
5:1
, pp.
3181
3183
.
5.
Bennett
,
T. D.
,
Krajnovich
,
D. J.
,
Li
,
L.
, and
Wan
,
D.
,
1998
, “
Mechanism of Topography Formation During CO2 Laser Texturing of Silicate Glasses
,”
J. Appl. Phys.
,
84
, No.
5
, pp.
2897
2905
.
6.
Bennett
,
T. D.
,
Krajnovich
,
D. J.
, and
Li
,
L.
,
1999
, “
Thermophysical Modeling of Bump Formation During CO2 Laser Texturing of Silicate Glasses
,”
J. Appl. Phys.
,
85
, No.
1
, pp.
153
159
.
7.
Jones, G. O., and Parke, S., 1971, Glass, 2nd ed., Chapman and Hall, London.
8.
Maglic
,
K. D.
, and
Marsicanin
,
B. S.
,
1973
, “
Factors Affecting the Accuracy of Transient Response of Intrinsic Thermocouples in Thermal Diffusivity Measurement
,”
High Temp.-High Press.
,
5
, No.
1
, pp.
105
110
.
9.
Baeri
,
P.
,
Campisano
,
S. U.
,
Rimini
,
E.
, and
Jing Ping
,
Z.
,
1984
, “
Time Resolves Temperature Measurement of Pulsed Laser Irradiated Germanium by Thin Film Thermocouple
,”
Appl. Phys. Lett.
,
45
, No.
4
, pp.
398
400
.
10.
Zenobi
,
R.
,
Hahn
,
J. H.
, and
Zare
,
R. N.
,
1988
, “
Surface Temperature Measurement of Dielectric Materials Heated by Pulsed Laser Radiation
,”
Chem. Phys. Lett.
,
150
, No.
5
, pp.
361
365
.
11.
Shanov
,
V.
,
Petkov
,
P.
,
Ivanov
,
B.
,
Popov
,
C.
, and
Vodenicharov
,
C.
,
1994
, “
Sensor for Temperature Measurement of Laser Heated Surfaces
,”
Vacuum
,
45
, No.
12
, pp.
1187
1189
.
12.
Xu
,
X.
,
Grigoropoulos
,
C. P.
, and
Russo
,
R. E.
,
1995
, “
Transient Temperature During Pulsed Excimer Laser Heating of Thin Polysilicon Films Obtained by Optical Reflectivity Measurement
,”
ASME J. Heat Transfer
,
117
, No.
1
, pp.
17
24
.
13.
Larson
,
B. C.
,
White
,
C. W.
,
Noggle
,
T. S.
,
Barhorst
,
J. F.
, and
Mills
,
D. M.
,
1983
, “
Time-Resolved X-Ray Diffraction Measurement of the Temperature and Temperature Gradients in Silicon During Pulsed Laser Annealing
,”
Appl. Phys. Lett.
,
42
, No.
3
, pp.
282
284
.
14.
Pui-Kwong
,
C.
, and
Hart
,
T. R.
,
1989
, “
Raman Scattering Temperature Probe of Laser Disk Marking
,”
Appl. Opt.
,
28
, No.
9
, pp.
1685
1691
.
15.
Morozova
,
E. A.
,
Shafeev
,
G. A.
, and
Wautelet
,
M.
,
1992
, “
Interferometric Measurement of Lateral Temperature Distribution During Laser-Assisted Processing of Thin Films
,”
Meas. Sci. Technol.
,
3
, No.
3
, pp
302
305
.
16.
Mann
,
S. S.
,
Todd
,
B. D.
,
Stuckless
,
J. T.
,
Seto
,
T.
, and
King
,
D. A.
,
1991
, “
Pulsed Laser Surface Heating: Nanosecond Time-Scale Temperature Measurement
,”
Chem. Phys. Lett.
,
183
, No.
6
, pp.
529
533
.
17.
Schafer
,
B.
, and
Bostanjoglo
,
O.
,
1993
, “
Tracing Fast Changing Temperature on Laser-Pulsed Metal Surfaces by Micropyrometry
,”
Rev. Sci. Instrum.
,
64
, No.
12
, pp.
3598
3601
.
18.
Holmes
,
N. C.
,
1995
, “
Fiber-Coupled Optical Pyrometer for Shock-Wave Studies
,”
Rev. Sci. Instrum.
,
66
, No.
3
, pp.
2615
2618
.
19.
Xu
,
X.
,
Grigoropoulos
,
C. P.
, and
Russo
,
R. E.
,
1996
, “
Nanosecond-Time-Resolution Thermal Emission Measurement During Pulsed Excimer-Laser Interaction With Materials
,”
Appl. Phys. A: Mater. Sci. Process.
,
A62
, No.
1
, pp.
51
59
.
20.
Nettesheim
,
S.
, and
Zenobi
,
R.
,
1996
, “
Pulsed Laser Heating of Surfaces: Nanosecond Timescale Temperature Measurement Using Black Body Radiation
,”
Chem. Phys. Lett.
,
255
, No.
1–3
, pp.
39
44
.
21.
Otte
,
D.
,
Kleinschmidt
,
H.
, and
Bostanjoglo
,
O.
,
1997
, “
Space and Time Resolved Temperature Measurements in Laser Pulse-Produced Metal Melts
,”
Rev. Sci. Instrum.
,
68
, No.
6
, pp.
2534
2537
.
You do not currently have access to this content.