Computations were performed to study the three-dimensional flow and heat transfer in a U-shaped duct of square cross section under rotating and non-rotating conditions. The parameters investigated were two rotation numbers (0, 0.24) and smooth versus ribbed walls at a Reynolds number of 25,000, a density ratio of 0.13, and an inlet Mach number of 0.05. Results are presented for streamlines, velocity vector fields, and contours of Mach number, pressure, temperature, and Nusselt numbers. These results show how fluid flow in a U-duct evolves from a unidirectional one to one with convoluted secondary flows because of Coriolis force, centrifugal buoyancy, staggered inclined ribs, and a 180 deg bend. These results also show how the nature of the fluid flow affects surface heat transfer. The computations are based on the ensemble-averaged conservation equations of mass, momentum (compressible Navier-Stokes), and energy closed by the low Reynolds number SST turbulence model. Solutions were generated by a cell-centered finite-volume method that uses second-order flux-difference splitting and a diagonalized alternating-direction implicit scheme with local time stepping and V-cycle multigrid.

1.
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1992
, “
High Performance Heat Transfer Ducts with Parallel Broken and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transf.
,
35
, No.
2
, pp.
513
523
.
2.
Chyu
,
M. K.
, and
Natarajan
,
V.
,
1995
, “
Surface Heat Transfer from a Three-Pass Blade Cooling Passage Simulator
,”
ASME J. Turbomach.
,
117
, No.
4
, pp.
650
656
.
3.
Liou, T.-M., Tzeng, Y.-Y., and Chen, C.-C., 1998, “Fluid Flow in a 180 Deg Sharp Turning Duct with Different Divider Thicknesses,” ASME 98-GT-189.
4.
Iacovides, H., Jackson, D. C., Kelemenis, G., and Launder, B. E., 1999, “The Measurement of Local Wall Heat Transfer in Stationary U-Ducts of Strong Curvature, with Smooth and Rib-Roughened Walls,” ASME Paper 99-GT-254.
5.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
,
1991
, “
Heat Transfer in Rotating Passages with Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
113
, No.
1
, pp.
42
51
.
6.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages with Smooth Walls
,”
ASME J. Turbomach.
,
113
, No.
3
, pp.
321
330
.
7.
Morris
,
W. D.
, and
Salemi
,
R.
,
1992
, “
An Attempt to Uncouple the Effects of Coriolis and Buoyancy Forces Experimentally on Heat Transfer in Smooth Circular Tubes That Rotate in the Orthogonal Mode
,”
ASME J. Turbomach.
,
114
, No.
4
, pp.
858
864
.
8.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1994
, “
Influence of Surface Heating Condition on Local Heat Transfer in a Rotating Square Channel With Smooth Walls and Radially Outward Flow
,”
ASME J. Turbomach.
,
116
, No.
1
, pp.
149
158
.
9.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H.
, and
Launder
,
B. E.
,
1996
, “
LDA Investigation of the Flow Development through Rotating U-Ducts
,”
ASME J. Turbomach.
,
118
, pp.
590
596
.
10.
Taslim
,
M. E.
,
Rahman
,
A.
, and
Spring
,
S. D.
,
1991
, “
An Experimental Investigation of Heat Transfer Coefficients in a Spanwise Rotating Channel with Two Opposite Rib-Roughened Walls
,”
ASME J. Turbomach.
,
113
, No.
1
, pp.
75
82
.
11.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages with Trips Normal to the Flow
,”
ASME J. Turbomach.
,
114
, No.
4
, pp.
847
857
.
12.
Zhang
,
N.
,
Chiou
,
J.
,
Fann
,
S.
, and
Yang
,
W.-J.
,
1993
, “
Local Heat Transfer Distribution in a Rotating Serpentine Rib-Roughened Flow Passage
,”
ASME J. Heat Transfer
,
115
, No.
3
, pp.
560
567
.
13.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages with Selected Model Orientations for Smooth or Skewed Trip Walls
,”
ASME J. Turbomach.
,
116
, pp.
738
744
.
14.
Zhang
,
Y. M.
,
Han
,
J. C.
,
Parsons
,
J. A.
, and
Lee
,
C. P.
,
1995
, “
Surface Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel with 60 deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
117
, No.
2
, pp.
272
280
.
15.
Tse, D. G. N., 1995, “Flow in Rotating Serpentine Coolant Passages with Skewed Trip Strips,” Report R95-9089F, Scientific Research Associates, Inc., Glastonbury, CN.
16.
Kuo
,
C. R.
, and
Hwang
,
G. J.
,
1996
, “
Experimental Studies and Correlations of Radially Outward and Inward Air-Flow Heat Transfer in a Rotating Square Duct
,”
ASME J. Heat Transfer
,
118
, No.
1
, pp.
23
30
.
17.
Besserman, D. L., and Tanrikut, S., 1991, “Comparison of Heat Transfer Measurements With Computations for Turbulent Flow Around a 180 Degree Bend,” ASME Paper 91-GT-2.
18.
Wang
,
T.-S.
, and
Chyu
,
M. K.
,
1994
, “
Heat Convection in a 180-Deg Turning Duct with Different Turn Configurations
,”
AIAA J. of Thermophysics and Heat Transfer
,
8
, No.
3
, pp.
595
601
.
19.
Rigby, D. L., Ameri, A. A., and Steinthorsson, E., 1996, “Internal Passage Heat Transfer Prediction Using Multiblock Grids and a k-ω Turbulence Model,” ASME Paper 96-GT-188.
20.
Iacovides
,
H.
, and
Launder
,
B. E.
,
1991
, “
Parametric and Numerical Study of Fully Developed Flow and Heat Transfer in Rotating Rectangular Ducts
,”
ASME J. Turbomach.
,
113
, No.
3
, pp.
331
338
.
21.
Iacovides
,
H.
,
Launder
,
B. E.
, and
Li
,
H.-Y.
,
1996
, “
The Computation of Flow Development through Stationary and Rotating U-Ducts of Strong Curvature
,”
Int. J. Heat Fluid Flow
,
17
, pp.
22
33
.
22.
Medwell
,
J. O.
,
Morris
,
W. D.
,
Xia
,
J. Y.
, and
Taylor
,
C.
,
1991
, “
An Investigation of Convective Heat Transfer in a Rotating Coolant Channel
,”
ASME J. Turbomach.
,
113
, No.
3
, pp.
354
359
.
23.
Tekriwal
,
P.
,
1991
, “
Heat Transfer Predictions with Extended k-ε Turbulence Model in Radial Cooling Ducts Rotating in Orthogonal Mode
,”
ASME J. Heat Transfer
,
116
, No.
2
, pp.
369
380
.
24.
Dutta
,
S.
,
Andrews
,
M. J.
, and
Han
,
J. C.
,
1994
, “
Simulation of Turbulent Heat Transfer in a Rotating Duct
,”
AIAA J. of Thermophysics and Heat Transfer
,
9
, No.
2
, pp.
381
382
.
25.
Tolpadi, A. K., 1994, “Calculation of Heat Transfer in a Radially Rotating Coolant Passage,” AIAA Paper 94-0261.
26.
Stephens, M. A., Chyu, M. K., Shih, T. I-P., and Civinskas, K. C., 1996, “Calculations and Measurements of Heat Transfer in a Square Duct with Inclined Ribs,” AIAA Paper 96-3163.
27.
Hwang, J.-J., Wang, W.-J., and Lai, D.-Y., 1997, “Numerical Simulation of Turbulent Heat Transfer and Flow in a Rotating Multiple-Pass Square Channel,” ASME 97-GT-367.
28.
Stephens
,
M. A.
, and
Shih
,
T. I-P.
,
1999
, “
Flow and Heat Transfer in a Smooth U-Duct with and without Rotation
,”
AIAA Journal of Propulsion and Power
,
15
, No.
2
, pp.
272
279
.
29.
Chen, H.-C., Jang, Y.-J., and Han, J.-C., 1999, “Computation of Flow and Heat Transfer in Rotating Two-Pass Square Channels by a Reynolds Stress Model,” ASME Paper 99-GT-174.
30.
Prakash
,
C.
, and
Zerkle
,
R.
,
1992
, “
Prediction of Turbulent Flow and Heat Transfer in a Radially Rotating Square Duct
,”
ASME J. Turbomach.
,
114
, No.
4
, pp.
835
846
.
31.
Prakash
,
C.
, and
Zerkle
,
R.
,
1995
, “
Prediction of Turbulent Flow and Heat Transfer in a Ribbed Rectangular Duct with and without Rotation
,”
ASME J. Turbomach.
,
117
, pp.
255
264
.
32.
Abuaf
,
N.
, and
Kercher
,
D. M.
,
1994
, “
Heat Transfer and Turbulence in a Turbulated Blade Cooling Circuit
,”
ASME J. Turbomach.
,
116
, pp.
169
177
.
33.
Stephens, M. A., Shih, T. I-P., and Civinskas, K. C., 1995, “Computation of Flow and Heat Transfer in a Rectangular Channel with Ribs,” AIAA Paper 95-0180.
34.
Rigby, D. L., Steinthorsson, E., and Ameri, A. A., 1997, “Numerical Prediction of Heat Transfer in a Channel with Ribs and Bleed,” ASME Paper 97-GT-431.
35.
Rigby, D. L., 1998, “Prediction of Heat and Mass Transfer in a Rotating Ribbed Coolant Passage with a 180 Degree Turn,” ASME Paper 98-GT-329.
36.
Bohn, D. E., Becker, V. J., Kusterer, K. A., Otsuki, Y., Sugimoto, T., and Tanaka, R., 1999, “3-D Internal Flow and Conjugate Calculations of a Convective Cooled Turbine Blade With Serpentine-Shaped and Ribbed Channels,” ASME Paper 99-GT-220.
37.
Stephens, M. A., Shih, T. I-P., and Civinskas, K. C., 1995, “Effects of Inclined Rounded Ribs on Flow and Heat Transfer in a Square Duct,” AIAA Paper 95-2115.
38.
Stephens, M. A., Shih, T. I-P., and Civinskas, K. C., 1996, “Computations of Flow and Heat Transfer in a Rotating U-Shaped Square Duct with Smooth Walls,” AIAA Paper 96-3161.
39.
Bonhoff, B., Tomm, U., and Johnson, B. V., 1996, “Heat Transfer Predictions for U-Shaped Coolant Channels with Skewed Ribs and With Smooth Walls,” ASME Paper 96-TA-7.
40.
Stephens, M. A., and Shih, T. I-P., 1997, “Computations of Compressible Flow and Heat Transfer in a Rotating Duct with Inclined Ribs and a 180-Degree Bend,” ASME Paper 97-GT-192.
41.
Bonhoff, B., Tomm, U., Johnson, B. V., and Jennions, I., 1997, “Heat Transfer Predictions for Rotating U-Shaped Coolant Channels with Skewed Ribs and With Smooth Walls,” ASME 97-GT-162.
42.
Shih, T. I-P., Lin, Y.-L., and Stephens, M. A., 1998, “Flow and Heat Transfer in an Ribbed U-Duct under Typical Engine Conditions,” ASME Paper 98-GT-213.
43.
Shih, T. I-P., Lin, Y.-L., and Stephens, M. A., 2000, “Flow and Heat Transfer in an Internal Coolant Passage,” Int. J. Rotating Mach., in press.
44.
Wagner, J. H., and Steuber, G. D., 1994, private communication.
45.
Steinthorsson, E., Shih, T. I-P., and Roelke, R. J., 1991, “Computations of the Three-Dimensional Flow and Heat Transfer within a Coolant Passage of a Radial Turbine Blade,” AIAA Paper 91-2238.
46.
Menter, F. R., 1993, “Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows,” AIAA Paper 93-2906.
47.
Menter, F. R., and Rumsey, C. L., 1994, “Assessment of Two-Equation Turbulence Models for Transonic Flows,” AIAA Paper 94-2343.
48.
Wilcox, D. C., 1993, Turbulence Modeling for CFD, DCW Industries, La Canada, CA.
49.
Thomas
,
J. L.
,
Krist
,
S. T.
, and
Anderson
,
W. K.
,
1990
, “
Navier-Stokes Computations of Vortical Flows over Low-Aspect-Ratio Wings
,”
AIAA J.
,
28
, No.
2
, pp.
205
212
.
50.
Rumsey, C. L., and Vatsa, V. N., 1993, “A Comparison of the Predictive Capabilities of Several Turbulence Models Using Upwind and Central-Difference Computer Codes,” AIAA Paper 93-0192.
51.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vector and Difference Schemes
,”
J. Comput. Phys.
,
43
, pp.
357
72
.
52.
Pulliam
,
W. R.
, and
Chaussee
,
D. S.
,
1981
, “
A Diagonal Form of an Implicit Approximate Factorization Algorithm
,”
J. Comput. Phys.
,
39
, pp.
347
363
.
53.
Anderson
,
W. K.
,
Thomas
,
J. L.
, and
Whitfield
,
D. L.
,
1988
, “
Multigrid Acceleration of the Flux-Split Euler Equations
,”
AIAA J.
,
26
, No.
6
, pp.
649
654
.
54.
Lin, Y.-L., Shih, T. I-P., Civinskas, K. C., Rigby, D. L., and Ameri, A. A., 1998, “Nonlinear Versus Linear k-ω Model for Predicting Flow and Heat Transfer in a Smooth U-Duct,” AIAA Paper 98-3560.
You do not currently have access to this content.