The phenomenon of turbulent natural convection in a horizontal heat-generating melt layer with solidification taking place at the cooled upper and lower boundaries is investigated theoretically. The objective is to determine the transient behavior of the crust at the upper and lower surfaces and the effect of crust formation on the turbulent natural convection process in the melt layer. Various surface temperatures, latent heats, and the heat source strengths are considered along with the effects of the Stefan number and Rayleigh number. Special attention is given to the interaction between the melt pool heat transfer and the crust dynamics. Numerical results are presented for the transient crust thickness, transient temperature distribution, eddy heat transport, and the heat transfer characteristics at the solid-liquid interface during the freezing process. The present study provides basic information needed to predict the transient behavior of a melt pool in a reactor lower head following a severe core-meltdown accident.

1.
Arpaci
V. S.
,
1995
, “
Buoyant Turbulent Flow Driven by Internal Energy Generation
,”
Int. J. Heat Mass Transfer
, Vol.
38
, pp.
2761
2770
.
2.
Asfia, F. J., and Dhir, V. K., 1994, “An Experimental Study of Natural Convection in a Volumetrically Heated Spherical Pool With Rigid Wall,” ASME Paper 94-WA/HT-26.
3.
Cheung
F. B.
,
1980
a, “
Heat-Source-Driven Thermal Convection at Arbitrary Prandtl Numbers
,”
J. Fluid Mech
, Vol.
97
, pp.
743
758
.
4.
Cheung
F. B.
,
1980
b, “
The Boundary Layer Behavior in Transient Turbulent Thermal Convection Flow
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
102
, pp.
373
375
.
5.
Cheung, F. B., 1978, “Turbulent Thermal Convection in a Horizontal Fluid Layer With Time Dependent Volumetric Energy Sources,” AIAA/ASME Thermophysics and Heat Transfer Conf., 78-HT-6, Palo Alto.
6.
Cheung
F. B.
,
1977
, “
Natural Convection in a Volumetrically Heated Fluid Layer at High Rayleigh Numbers
,”
Int. J. Heat Mass Transfer
, Vol.
20
, pp.
499
506
.
7.
Cheung, F. B., Shiah, S. W., Cho, D. H., and Tan, M. J., 1992, “Modeling of Heat Transfer in a Horizontal Heat-Generating Layer by an Effective Diffusivity Approach,” ASME/HTD, Vol. 192, pp. 55–62.
8.
Dinh, T. N., and Nourgalier, R. R., 1997, “On Turbulence Modeling in Large Volumetrically Heated Liquid Pools,” Nucl. Engng. Design, in press.
9.
Fan, T. H., 1996, “Heat Transport Phenomena of Turbulent Natural Convection in a Melt Layer With Solidification,” M.S. thesis, The Pennsylvania State University, University Park, PA.
10.
Fielder, H. E., and Wille, R., 1970, “Turbulante Freie Konvektion in Einer Horizontalea Flussigkeitsschicht mit Volumen-Warmequelle,” Paper NC 4.5, Proc. Fourth Int. Heat Transfer Conf, Vol. IV, pp. 1–12.
11.
Gabor, J. D., Ellison, P. G., and Cassulo, J. C., 1980, “Heat Transfer From Internally Heated Hemispherical Pools,” Presented at the 19th National Heat Transfer Conference, Orlando, FL.
12.
Jahn, M., and Reineke, H. H., 1974, “Free Convection Heat Transfer With Internal Heat Sources, Calculations and Measurements,” Proc. 5th Int. Heat Transfer Conf., Paper NC2.8, Vol. III, Tokyo, Japan, pp. 74–83.
13.
Keyhani
M.
, and
Kulacki
F. A.
,
1983
, “
Experiments on Transient Thermal Convection with Internal Heat Sources—Large Time Results
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
105
, pp.
261
266
.
14.
Kulacki
F. A.
, and
Emara
A. A.
,
1977
, “
Steady and Transient Thermal Convection in a Fluid Layer With Uniform Volumetric Energy Sources
,”
J. Fluid Mech.
, Vol.
83
, pp.
375
395
.
15.
Kulacki
F. A.
, and
Goldstein
R. J.
,
1972
, “
Thermal Convection in a Horizontal Fluid Layer With Uniform Volumetric Energy Sources
,”
J. Fluid Mech
, Vol.
55
, pp.
271
287
.
16.
Kulacki
F. A.
, and
Nagle
M. Z.
,
1975
, “
Natural Convection in a Horizontal Fluid Layer With Volumetric Energy Sources
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
97
,
204
211
.
17.
Kymalainen
O.
,
Tuomisto
H.
,
Hongisto
O.
, and
Theofanous
T. G.
,
1994
, “
Heat Flux Distribution From a Volumetrically Heated Pool With High Rayleigh Number
,”
Nuclear Engineering and Design
,
149
, pp.
401
408
.
18.
Mayinger, F., Jahn, M., Reineke, H. H., and Steinbrenner, V., 1976, “Examination of Thermohydraulic Processes and Heat Transfer in a Core Melt,” BMFT RS 48/1, Institute fur Verfanhrenstechnic der T. U., Hanover, Germany.
19.
Min, J. H., and Kulacki, F. A., 1978, “An Experimental Study of Thermal Convection With Volumetric Energy Sources in a Fluid Layer Bounded From Below by a Segment of a Sphere,” Presented at the 6th International Heat Transfer Conference, Toronto, Canada.
20.
Nourgalier
R. R.
, and
Dinh
T. N.
,
1996
, “
An Investigation of Turbulence Characteristics in an Internally Heated Unstable-Stratified Fluid Layer
,”
ANS Proceedings HTC
, Vol.
9
, pp.
357
367
.
21.
Roberts
P. H.
,
1967
, “
Convection in Horizontal Layers With Internal Heat Generation—Theory
,”
J. Fluid Mech.
, Vol.
30
, pp.
33
49
.
22.
Schwiderski
E. M.
, and
Schwab
H. J.
,
1971
, “
Convection Experiments With Electrolytically Heated Fluid Layers
,”
J. Fluid Mech.
, Vol.
48
, pp.
703
719
.
23.
Steinberner, U., and Reineke, H. H., 1978, “Turbulent Buoyancy Convection Heat Transfer With Internal Heat Sources,” Proc. 6th Int. Heat Transfer Conf., Vol. 2, pp. 305–310, Paper NC-21, Toronto, Canada.
24.
Tan
M. J.
,
Cho
D. H.
, and
Cheung
F. B.
,
1994
, “
Thermal Analysis of Heat-Generating Pools Bounded From Below by Curved Surfaces
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
127
135
.
25.
Theofanuous, T. G., Liu, C, Addition, S., Angelini, S., Kymalainen, O., and Salmassi, T., 1995, “In-Vessel Coolability and Retention of a Core Melt,” DOE/ID-10460, U.S. Department of Energy.
26.
Thirlby
R.
,
1970
, “
Convection in an Internally Heated Layer
,”
J. Fluid Mech.
, Vol.
44
, pp.
673
693
.
27.
Tritton
D. J.
, and
Zarraga
M. N
,
1967
, “
Convection in Horizontal Fluid Layers With Heat Generation Experiments
,”
J. Fluid Mech.
, Vol.
30
, pp.
21
32
.
This content is only available via PDF.
You do not currently have access to this content.